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ABSTRACT

We present an efficient Hough transform for automatic detection of cylinders in point clouds. As cylinders are one of
the most frequently used primitives for industrial design, automatic and robust methods for their detection and fitting are
essential for reverse engineering from point clouds. The current methods employ automatic segmentation followed by
geometric fitting, which requires a lot of manual interaction during modelling. Although Hough transform can be used
for automatic detection of cylinders, the required 5D Hough space has a prohibitively high time and space complexity for
most practical applications. We address this problem in this paper and present a sequential Hough transform for automatic
detection of cylinders in point clouds. Our algorithm consists of two sequential steps of low dimensional Hough trans-
forms. The first step, called Orientation Estimation, uses the Gaussian sphere of the input data and performs a 2D Hough
Transform for finding strong hypotheses for the direction of cylinder axis. The second step of Position and Radius Esti-
mation, consists of a 3D Hough transform for estimating cylinder position and radius. This sequential breakdown reduces
the space and time complexity while retaining the advantages of robustness against outliers and multiple instances. The
results of applying this algorithm to real data sets from two industrial sites are presented that demonstrate the effectiveness
of this procedure for automatic cylinder detection.

1 INTRODUCTION

Recent advances in 3D scanning technologies have made
possible high-speed acquisition of dense and accurate point
clouds at moderate costs (Laser scanner survey, 2005). The
explicit geometric information available from point clouds
can be used to automate the 3D reconstruction process,
which has been largely manual till now. This is especially
true for the reconstruction of industrial sites as due to their
man-made origin presence of well-defined CAD primitives
can be expected. As-built modelling of industrial sites is
required for documentation, and for various emerging tech-
nologies that use Virtual and Augmented reality for train-
ing and other services (STAR, 2004). A high degree of
automation in 3D reconstruction should benefit all these
application areas.

Cylinders are one of the most important geometric primi-
tives found on industrial sites. As reported by Nourse et
al. 85% of objects found in most industrial scenes can
be approximated by planes, spheres, cones and cylinders
(Nourse et al., 1980, Petitjean, 2002). This percentage
rises to 95% if toroidal surfaces are also included in the
set of available primitives (Requicha and Voelcker, 1982).
Various methods have been proposed in the literature to fit
cylinders to point clouds (Lukács et al., 1998, Marshall et
al., 2001, Chaperon and Goulette, 2001).

These methods can be divided into two categories: those
requiring a prior segmentation and those processing raw
point clouds without segmentation. The methods belong-
ing to the first category fit a cylindrical surface to the seg-
mented point cloud. Most of them use non-linear least

squares estimation to minimize the orthogonal distance of
the points from the surface of cylinder (Lukács et al., 1998,
Marshall et al., 2001). These methods assume that the seg-
mentation algorithm is able to assign correct labels and
there are only a few outliers or segmentation errors. As
is shown in the comparison of segmentation algorithm for
planar surfaces in (Hoover et al., 1996) and for curved sur-
faces in (Min et al., 2000) these requirements are not met in
most of the real-life cases. The sensitivity of least squares
based geometric fitting to outliers is well known (Björck,
1996, Press et al., 1988). Furthermore, non-linear least
squares is an iterative process, and to avoid local minima it
requires good initial values of parameters being estimated.
In case of over-segmentation estimated initial values are
poor and the algorithm can get trapped in one of the local
minima. On the other hand, under-segmentation results in
high percentage of outliers, resulting in an unfaithful re-
construction.

The methods belonging to the second category try to avoid
these problems by processing raw point clouds using ro-
bust fitting methods like RANSAC (Fischler and Bolles,
1987, Chaperon and Goulette, 2001, Bolles and Fischler,
1981). For example in (Chaperon and Goulette, 2001)
RANSAC is used on Gaussian sphere to find direction of
cylinder axis which is then used as initial value for the least
squares fitting. This method assumes a small number of
cylinders in the scene. The presence of multiple cylinders
of different radii along one orientation can lead to failure.
For many real life industrial scenes, as the last section will
show, these limitations are too restrictive.

Hough based methods have long been used to tackle prob-
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Figure 1: The five parameters for the cylinder. (θ, φ)
gives the axis direction in spherical coordinates, r
is the radius, P (u, v) gives the position in terms
of u and v which along with axial direction n =
(cos θ sin φ, sin θ sin φ, cos φ) form the cylinder’s lo-
cal coordinate system.

lems of outliers and multiple instances (Hough, 1962). In
noisy and cluttered images they have no parallel in find-
ing lines and curves like circles (Kimme et al., 1975). For
range data analysis they have been used to re-construct
buildings by finding planar surfaces in 2 1

2D data obtained
from an air-borne laser scanner (Vosselman and Dijkman,
2001). Similarly they have been successfully used for char-
acterization of planar fractures from 3D data (Sarti and
Tubaro, 2002).

A major drawback of the Hough transform is its time and
space complexity. For geometric fitting problems in 3D
the space and time complexity can be approximated by
O(sp) and O(sp−1n) respectively, where n is the num-
ber of points, p is the number of parameters and s is the
number of samples along one Hough dimension. Keeping
in view the fact that in most modelling projects employing
laser scanning the number of points can be in the order of
millions, Hough Transform becomes impractical for fitting
of objects having more than three parameters.

Although a cylinder has five degrees of freedom, different
parameterizations to represent it have been proposed in the
literature. For example seven parameters with two con-
straints are used in (Lukács et al., 1998). The parameteri-
zations we propose is shown in Figure 1 and is best suited
for the Hough transform as it uses a minimum number of
free parameters with no constraints.

The five parameters for cylinder make direct use of Hough
transform impractical. One effective way to reduce the
space and time complexity of Hough transform is to use
sequential processing and break the problem into a set of
sub-problems of low complexity. That is the approach we
employ here and divide the problem of cylinder fitting into
two sequential steps. The first step uses Gaussian sphere
of the point cloud as its input and consists of a 2D Hough
transform to find strong hypothesis for cylinder axes. In
step 2 a 3D Hough transform is performed for a few neigh-
boring directions found in step 1, resulting in estimation
of radius and position. Thus the sequential processing al-
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Figure 2: How a point P in input Gaussian sphere votes for
a circle in the Hough space (a) Point P on Input Gaussian
sphere, votes for a great circle on Hough Gaussian Sphere
in (b). This great circle C results from the intersection of
Gaussian Sphere with a plane whose normal n equals P.

lows us to reduce the effective dimension of Hough space
to three.

The rest of the paper is organized as follows. The first
step, of orientation estimation, is discussed in Section 2.
Section 3 contains details about the second step o position
and radius estimation. In Section 4 we present the results
of applying the proposed method to two data sets captured
from real industrial sites. Section 5 contains some conclu-
sions and directions for future work.

2 ORIENTATION ESTIMATION

The first step in the presented sequential Hough transform
tries to find strong hypotheses for cylinder orientation. This
orientation estimation is based on the observation that for
cylinders the normals form a great circle on the Gaussian
sphere (Carmo, 1976). This great circle results from the in-
tersection of the unit sphere with a plane passing through
the origin. The normal vector of this plane is the same as
the cylinder axis. Although, in principle any plane fitting
method can be used for detection of this great circle, we
use Hough transform to avoid the above-mentioned prob-
lems of outliers and multiple-instances.

The standard Hough transform to find planes requires a
three dimensional Hough space (Sarti and Tubaro, 2002).
There are two parameters corresponding to the direction
of the plane normal expressed in spherical coordinates and
one for the distance of the plane from the origin. In the
current case we have two constraints that will enable us
to reduce the dimension of the Hough space from three to
two. Furthermore, we will exploit these constraints to for-
mulate a rapid update method for Hough space. Firstly,
the plane must pass through the origin, which means that
we can take out the third parameter corresponding to the
distance from the origin. This leaves us with a 2D Hough
space. Secondly, the plane must intersect the unit sphere,
meaning each input point votes for one circular region in
the Hough space (Figure 2).

Since the Hough transform for this step uses the Gaussian
sphere of the given point cloud as its input, we need to
estimate the normal for each point. As we are process-
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Figure 3: Step 1: Orientation Estimation. (a) Input cylinder. (b) Input Gaussian sphere with the great circle corresponding
to the input cylinder. (c) The Hough Gaussian Sphere with each point in input Gaussian sphere voting for a great circle.
The intersection of all circles gives an estimate for cylinder orientation

ing a raw point cloud without triangulation, the normal es-
timation methods specific to triangulated data (Petitjean,
2002) cannot be used. Instead, we use the method given
by Hoppe in (Hoppe et al., 1992) that is more suited to un-
structured point clouds. This method searches for k nearest
neighbors for each point, and then estimates the normal by
eigen-analysis of its covariance matrix. For more details
see (Hoppe et al., 1992).

As we have explained above, the constraints in our prob-
lem allowed us to remove the third parameter correspond-
ing to the distance of the plane from the origin from the
standard plane-fitting Hough transform. This leaves us
with quite a unique situation, because on the input we have
the Gaussian sphere of the point cloud, while the Hough
space consists of only orientations of the plane normal,
which can be interpreted as another Gaussian sphere. To
distinguish between these two separate entities we have
named the Gaussian sphere resulting from the normals of
the point cloud as Input Gaussian sphere, while the one in
Hough space is named Hough Gaussian sphere (Figure 3).

Each point in the input Gaussian sphere votes for all plane
orientations on the Hough Gaussian sphere, which are or-
thogonal to the orientation represented by this point (Fig-
ure 2). The set of all points in R

3orthogonal to a given
direction forms a plane. But in this case we have another
constraint namely the magnitude of each point in this orthogonal-
set must equal one. This gives us a curve that is the inter-
section of the plane with the Hough Gaussian sphere i.e.,
a great circle. Consequently, each point in the Input Gaus-
sian sphere votes for a great circle on the Hough Gaussian
sphere. The normal of this great circle equals the normal
vector of the current point. This voting scheme for one
point is shown in Figure 2, while Figure 3 shows how in-
dividual circles arising from points belonging to a cylinder
intersect on the Hough Gaussian sphere giving an estimate
for the cylinder orientation.

The intersection of these great circles gives a high value
in Hough space, and estimates the direction of the cylinder
axis. The rapid update method described above requires a
parametric equation of the great circle with a given normal
expressed in spherical coordinates. Given this parametric
equation, each point from the Input Gaussian sphere can be

directly mapped to its respective cells in the Hough space.
The parametric equation for the great circle in the xy-plane
with z-axis as its normal is given by:

x = cos t y = sin t z = 0 0 ≤ t ≤ 2π (1)

We need to apply a rotation to each point given by Equa-
tion 1 to get points for a great circle with a given normal.
This rotation matrix must rotate z-axis to the normal of the
required circle. As all the points are in one plane, for the
same purpose we can use the reflection matrix given by
Householder reflection (Golub and Loan, 1991) :

z = (0 0 1)T (2)

n = (cos θ sin φ sin θ sin φ cos φ)T (3)

R = I − 2bbT (4)

Where:
b =

z − n
‖z − n‖ (5)

Using these expressions for a point P(θ, φ) the resulting
rotation matrix R can be derived.

In the Figure 2 and Figure 3 we see this voting by points
on input Gaussian sphere to the cells in the Hough space.

The algorithm for step 1 of our procedure is as follows:

1. Calculate normals for all points in a given point cloud
using plane fitting on their k nearest neighbors.

2. Make a sampled Hough space to represent Hough Gaus-
sian Sphere for orientation of cylinder axis using ap-
proximate uniform sampling method (Lutton et al.,
1994, Rusin, 2004).

3. For each point in the input data, use the spherical co-
ordinates of its normal calculated in step 1 to derive
matrix R using Equation 4.

4. Increment the cells in Hough space given by rotated
parametric form of the circle (1 and Equation 4).

ISPRS WG III/3, III/4, V/3 Workshop "Laser scanning 2005", Enschede, the Netherlands, September 12-14, 2005

62



nu

v

(a)

u

v

(b)

Figure 4: Step 2. Position and Radius Estimation (a) Points
projected along the estimated orientation (b) A 2D slice
through the 3D Hough space for the correct radius and ori-
entation.

5. Find the points in Hough Gaussian sphere whose ac-
cumulator values are greater than a threshold. These
are hypotheses for cylinder directions.

6. Select the points who have voted for the highest cell,
and proceed with the second step of position and ra-
dius estimation.

3 POSITION AND RADIUS ESTIMATION

As explained in Section 2 a cylinder can be represented
by five parameters. Step 1 gives the strong hypotheses
for direction of the cylinder. As a result we are left with
three unknown parameters corresponding to cylinder posi-
tion and radius, and thus a three-dimensional Hough space
is needed for this step. For each orientation found in step 1
we take some of its neighbors on Gaussian sphere and per-
form Step 2 for each of them. This results in the refinement
of the orientation estimate in addition to the estimation of
the position and the radius of the cylinder.

We begin Step 2 by projecting all the points to the plane
with a normal direction equal to the cylinder axis. For this
purpose we need an orthonormal coordinate system, hav-
ing cylinder orientation as one of its axes. There are two
options to calculate such a set of orthonormal bases from a
given vector, either we can use Gram-Schmidt Orthogonal-
ization (Press et al., 1988) or alternately singular value de-
composition can be employed (Golub and Loan, 1991). By
using any of these techniques we get an orthonormal coor-
dinate frame consisting of three bases vectors,

(
u v n

)
where n equals the cylinder axis. This frame is used for
projecting all points to one plane.

Once points have been projected we proceed to calculate
the position and the radius of the cylinder using circle fit-
ting. The Hough transform for circle fitting uses formula-
tion given in (Kimme et al., 1975). For a given radius r,
each projected point votes for bins in a circular region in
the Hough space with the current point as center. If the
projected coordinates of a point are given by (up,vp), it
votes for the cells in the Hough space given by:

(r cos ω + up, r sin ω + vp) (6)

The peak in the Hough space gives the refined orientation
and the radius of the cylinder directly. However, the posi-
tion is still in the projection coordinate system, calculated
above, and must be transformed back to the world coordi-
nate system to get a 3D point on the axis of cylinder. This
coordinate transformation is given by the following matrix
T:

T =

⎛
⎝

ux uy uz

vx vy vz

nx ny nz

⎞
⎠ (7)

The algorithm for step 2 of our procedure can be summa-
rized as follows:

1. For each orientation found in Step 1, find its N near-
est neighbors. For this neighbor search use approxi-
mate uniform sampling (Rusin, 2004).

2. For each orientation n derive an orthonormal coordi-
nate system consisting of three basis vectors given by(
u v n

)
Project all points along n.

3. For each value of the radius r in a user-specified ra-
dius range, increment the Hough cells given by Equa-
tion 6 for the projection coordinates of each projected
point (up, vp) .

4. Find the peak in the Hough space. This gives cylinder
orientation and radius directly. Transform the posi-
tion to world coordinate system using Equation 7.

5. Remove the points corresponding to the found cylin-
der from the data

6. If any points are left proceed with step 1.

Figure 4(a) shows the results of projection, while Figure 4(b)
shows a slice through three dimensional Hough space for
the correct radius.

4 RESULTS

The method outlined above was applied to three point cloud
data sets from industrial sites and the results are shown in
Figure 5 and Figure 6. In Figure 5 we show the step-by-
step results for a point cloud captured from an L-junction.
In 5(a) we show the original point cloud, 5(b) shows the es-
timated normals as arrows. Note the ambiguity in normal
estimation, that justifies the use of half Gaussian sphere.
5(c) shows the input Gaussian sphere with two great circles
corresponding to the two cylinders in the the input data.
5(d) shows the Hough Gaussian sphere with two peaks de-
tecting the two strong hypothesis for cylinder orientations.
In 5(e) we illustrate the process of neighboring orientation
selection on uniformly sampled Gaussian sphere, which is
necessary for the refinement of the orientation estimation
in the second step. 5(f) shows the Hough space for correct
orientation and radius; the peak gives the position of the
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Figure 5: Step by step processing of an L-junction point
cloud (a) Input data (b) Estimated normals (c) Input Gaus-
sian sphere (d) Hough Gaussian Sphere(e) Selection of
neighboring orientations (f) Step 2 Position and radius es-
timation shown for correct orientation and radius. (g) Se-
lect points belonging to the cylinder (h) Final result, both
cylinders are detected automatically. found.

cylinder. In 5(g) the points belonging to the detected cylin-
der are selected and removed from the input data based on a
distance threshold. The process is repeated for the remain-
ing points resulting in the detection of the second cylinder.
5(h) shows the final result, where both cylinders are suc-
cessfully detected.

For results shown in Figure 5 the Hough space for Step
1 consisted of 250, 000 cells, whereas Step 2 used a 3D
Hough space having 512× 512× 100 ∼= 26× 106 cells. In
contrast a straight forward 5D Hough space for equivalent
results would have required 512×512×100×512×512 ∼=
7 × 1012 cells in the accumulator, which is impractical,
even for today’s high computing power. It shows that the
presented sequential Hough transform greatly reduces the

(a) (b)

(c) (d)

Figure 6: Results of Hough transform. (a and c) Input point
cloud (b and d) Results of cylinder detection

space and time complexity and makes the problem of au-
tomatic cylinder detection manageable.

Figure 6 shows the results of our algorithm on two data
sets from different industrial sites. During their processing
it was found that during the step 1 of orientation estima-
tion the large clusters on Input Gaussian sphere resulting
from big planar areas interfered with cylinder axis estima-
tion. To resolve this problem, the data sets were prepro-
cessed with a plane-fitting Hough transform to remove pla-
nar areas. Figure 6(a) shows point cloud before processing
Figure 6(b) shows the cylinders separately. The sequen-
tial Hough transform has been able to detect cylinders in
different orientation and multiple radii.

Although the presented algorithm is sequential and errors
in step 1 can be expected to affect step 2. To prevent this
the second step is carried out for a few neighbors of esti-
mated orientation of step 1. This results in refinement of
the orientation estimate along with coupling of both steps.

Figure 6(c) and Figure 6(d) show another data set from an
industrial plant along with found cylinders. As for this data
set wider radius bounds were specified, cylinders of both
small and big radii were successfully detected.

5 CONCLUSIONS

We have presented a sequential Hough transform to auto-
matically detect cylinders in point clouds. A sequential
approach enabled us to employ a combination of 2D and
3D Hough transforms instead of a originally required 5D
Hough space. As the results showed this sequential break-
down still maintains the advantage of robustness against
outliers and multiple instances that necessitated the use of
Hough transform in the first place.

As cylinders are one the most commonly found objects, ei-
ther as pipes or part of other complex objects as cylindrical
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patches, their automatic detection can decrease the manual
effort required for reverse engineering.

Although we haven’t formulated it in this paper, the exten-
sion of the second step of Position and Radius estimation
to elliptical cylinders is quite straightforward. In future
we plan to investigate sequential Hough transform for de-
tection of objects arising from planar sweeps of general
curves.
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