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ABSTRACT

With the use of terrestrial laser scanning, it is possible to capture thousands of 3-dimensional points on the surface of an object. The
problem is that the vast quantity of data that needs to be manipulated sometimes hinders its application. There exist several techniques
for the semi-automatic extraction of low-level features that help compensate for this problem. In addition to reviewing some of these
techniques, some modifications will also be discussed, along with their use in developing a covariance based procedure to preform
classification and feature extraction for terrestrial laser scanning point clouds using local neighbourhoods. Results from this procedure
are then used to segment the surface features of the point cloud. The application of this is demonstrated on several captured data
sets. Additional information such as methods for defining local surface intersections and direction of principle curvature will also be
detailed based on using local information.

1 INTRODUCTION

Terrestrial laser scanning (TLS) is still a relatively new innova-
tion with regards to its application in industry areas. Recently it
has seen use in monitoring structural deformation (Gordon et al.,
2003), modelling of industrial plants, recording and cataloguing
of historical and cultural heritage sites (Langer et al., 2000), land-
slide mapping (Ono et al., 2000) and it has also been integrated
with traditional surveying practices. It has the advantage over tra-
ditional surveying and photogrammetric techniques of being able
to capture large volumes of 3-dimensional point cloud data effi-
ciently without further processing. Some systems are quoted to
be able to capture up to 400 points/cm2 resulting in gigabytes of
data.

While the short capture time may make TLS attractive, the vast
quantity of data has meant that the bottleneck in work flow has
been shifted from the data acquisition stage in the field, to the
processing stage back at the office. Often weeks can be spent on
data that took a couple of hours to capture with most of the data
comprising unnecessary or redundant information. While some
software exists to help the user by semi-automating some of the
processes, a more automated approach would help alleviate this
bottleneck and remove one of the major drawbacks of TLS.

A variety of techniques from traditional photogrammetric, com-
puter vision and signal processing fields have been applied to the
classification of point clouds. Some of these have included trans-
formation into parameter space such as the Hough transform and
the Gaussian sphere (Vosselman et al., 2004) which try to group
common elements together based on the surface parameters and
surface normal information respectively. Techniques such as ten-
sor voting (Tang et al., 2004) and region growing (Besl and Jain,
1988) have been applied which segment the data based on lo-
calised information, Morphological approaches such as medial
axis and skeletonisation have also been used by utilising diffusion
equations, radial basis function and grass-fire techniques (Gorte
and Pfeifer, 2004) (Ma et al., 2003).

The main problem encountered with TLS point clouds is that it

is a fully 3-dimensional data set that, while the sampling inter-
val is consistent in the scanner’s spherical domain, translates into
an uneven distribution of points in the 3-dimensional Cartesian
domain. Also, unlike airborne laser scanning (ALS) data (which
are usually treated as being 2.5-dimensional for this reason), in
most instances it is impossible to map the point cloud into a
generic space. This is because this space usually takes the form
of a complex manifold which cannot be easily unwrapped into 2-
dimensions (without taking into account hyper-dimensional con-
straints). Local methods must also be able to take into account
the changing distribution throughout the point cloud, as well as
the varying error tolerances based not only on distance, but sur-
face orientation with respect to the scanner (Bae et al., 2005).
These problems make application of processing techniques on
TLS point clouds more difficult than for most point clouds.

This paper will outline a method to classify points by using the
variance of the curvature in a local neighbourhood. A modified
region growing algorithm will be given that uses the classification
information to segment surfaces. It will then be illustrated how
to use the local point information to define points of intersection
between adjacent surfaces, as well as a method for determining
the principle directions of change and some applications for this.
The results of these methods used on practical data sets will be
displayed along with future considerations.

2 CLASSIFICATION

2.1 Covariance Analysis

Covariance analysis is often used as a starting point in classifi-
cation of 3D point clouds based on geometric properties (Pauly
et al., 2002). This is performed by determining the covariance
matrix for a local neighbourhood surrounding the point of inter-
est referred to as the index point, defined as:

Σ = COV (X) =
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with the entities in the covariance matrix for a neighbourhood of
size k defined as:

σ2
x = var(x) = E(x2)− E(x)2

=
1

k

kX
i=1

(xi − x̄)2 (2)

σxy = cov(x, y) = E(xy)− E(x)E(y)

=
1

k

kX
i=1

(xi − x̄) (yi − ȳ)2 (3)

where E(x) is the expected value for an axis (E(x) = x̄), and
var(x) and cov(x, y) denoting the variance and covariance re-
spectively.

Covariance analysis then proceeds by examining the eigenvalues
(λi) and eigenvectors (ei) of the covariance matrix. The eigen-
vectors will correspond to the principle components (or direc-
tions) of the neighbourhood with the eigenvalues denoting the
variance in the direction of their corresponding eigenvector. The
orientation or the local surface normal for the neighbourhood can
then be approximated by the eigenvector with the smallest corre-
sponding eigenvalue. This is because it is equivalent to the for-
mulation of the least squares plane fitting problem (Shakkarji,
1998). The only difference is that in the entries in matrix Σ are
not divided by the k and the smallest eigenvalue is equal to the
sum of the residuals squared.

By using the variance in the normal direction as a indicator of the
quality of fit, we can determine if the neighbourhood is comprised
of surface points by setting an adequate threshold. This relies on
the assumption that the neighbourhood has the same density and
distribution as the entire point cloud i.e. that each neighbour-
hood is comparable to another. The problem with this is that if
the density and distribution is not always consistent, it becomes
difficult to set a threshold, especially with point clouds captured
using TLS where attributes such as distance from scanner to sur-
face, incident angles and error properties often result in each point
having a unique variance value for a surface. Work done by (Bae
et al., 2005) does allow the approximate calculation of the unique
theoretical threshold value for each point based on the scanners
origin and attributes. If the point cloud contains multiple scans,
then the problem becomes more complex because of the inclusion
of variance summation, ray tracing and combined distribution of
points to accurately determine the appropriate threshold, and the
scanner information (especially the origin) is not always retained.

Another method to counter this often used in computer graphics is
to use the variance in the normal direction over the total variance
in the neighbourhood, which is also known as the percentage of
population variance or surface variance:

κ(pt) ≈ σ2
n(p) =

λ0

λ0 + λ1 + λ2
(4)

which may be considered to be comparable to a normalised plate
tensor used in tensor voting (Tang et al., 2004). This value is
used to approximate the level of curvature for the neighbourhood
and is more consistent with different neighbourhood densities
and sizes. The method does have a shortcoming since the value
may be attributable to noise or texture (surface properties such as
roughness) instead of curvature of the surface. This means that
the threshold must also allow for this. Also, while this curvature
approximation is not directly effect by changes in neighbourhood
size (because the denominator and numerator change proportion-
ally to each other as size of neighbourhood changes), the size

should be chosen based on the resolution of the scan and the level
of detail. This way, there is a sufficient sample to preform the
calculations, but small details are not smoothed over. The next
section will detail a measure for classification of surfaces that is
less sensitive to some of the effects outlined.

2.2 Surface Detection

If we examine the geometric properties of a point cloud, then
each point can be loosely categorised as belonging to a surface,
being on or near an edge or intersection of two or more surfaces,
lying on the boundary of a surface, belonging to a line or a sin-
gular point. These are generally considered as the lowest level of
features, with higher level features comprising of one ore more
of these low level features. The main focus in this paper is to la-
bel the points as belonging to a surface, edge or boundary group,
with the emphasis on surface points.

As mentioned in the previous section, the curvature approxima-
tion can be used to determine if a point is such that its neighbour-
hood comprises of a smooth, near planar surface. However, due
to its sensitivity to highly curved surfaces and, more importantly,
textured surfaces, it will sometimes misclassify surfaces regions
as containing edges. To rectify this, instead of looking for a point
with a surrounding neighbourhood having a low curvature value,
we look for a point with a surrounding neighbourhood that has a
consistent curvature level. This means for surfaces such a pipes
or rough surfaces such as corrugated roofs which may have points
that do not have a low curvature value, the curvature will still be
consistent throughout the region. For points that are near an edge,
the neighbourhood will have range of curvature from low to high.

To see if the curvature is consistent, we examine the variance of
the curvature throughout the neighbourhood.

var(κ(pt)) = E(κ2)− E(κ)2 =
1

k

kX
i=1

(κi − κ̄)2 (5)

If the point is on a smooth surface, then the variance should be
nominally zero. If we examine a point cloud that contains highly
textured or curved surfaces, we can see that the variance of cur-
vature dampens the effects these have compared to just using cur-
vature, as seen in the difference between Figure 1a and Figure
1b. We can also see how the incident angle effects the approxi-
mate curvature value on areas of piping and how the variance of
curvature is not as significantly effected.

(a) (b)

Figure 1. (a) Gray scale image of the curvature index vs (b) vari-
ance of curvature index applied to an industrial scene. Notice
contrast between curvature and variance of curvature for the pipes

A drawback to using variance of curvature is that it increases the
computation time (but not the complexity). However, it can be
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used in conjunction with a curvature threshold, so it only veri-
fies or invalidates edges that are first detected by the curvature
measure, and doesn’t recheck the majority of smooth planar sur-
faces that can be detected by just using the curvature threshold.
Another drawback to using the variance of curvature is finding
a threshold value. Although it is possible to use information to
calculate a theoretical value as with curvature, it is a much more
complex process, meaning that trials are normally used determine
a threshold (although it has been observed to remain relatively
fixed for different point clouds). As with curvature, a neighbour-
hood size should be used so that there is a sufficient sample, but
small features are not smoothed over. The neighbourhood size
for curvature is normally the same as that used for variance of
curvature.

2.3 Boundary Detection

Points that lie on the boundary of a surface (but not near the in-
tersection of two surfaces present in the scan cloud) will initially
be classed as surface points since their neighbourhood will have
the same properties as that for a interior surface point. However,
because the index point lies on the boundary, when the neighbour-
hood is projected onto the local best fit plane, the distribution of
the neighbourhood takes on a more elliptical shape when com-
pared with an interior point which has a distribution with a circu-
lar shape. This can also be seen in the difference between the two
largest eigenvalues, since they represent the variance in the prin-
ciple directions on this plane. A small difference will represent an
interior point, and a large difference represents a boundary point
(Tang et al., 2004).

However since the distribution of the point cloud will most proba-
bly not be consistent, this method may be too sensitive. A simpler
and more robust technique is to examine the position of the index
point in relation to the centroid of the neighbourhood. If there
is a large difference, then it is because the point is close to the
boundary and there is no points to one side of it. This can be
determined by setting a confidence region around the centroid of
the neighbourhood and testing to see if the projected index point
is outside the confidence region. This is done by using the eigen-
values and the chi-squared test applied to the equation 6 (Johnson
and Wichern, 2002).

(ui)
2

λ1
+

(vi)
2

λ2
≤ χ2

2(α) (6)

with u and v being the project coordinate system with

ui = e1 • (pti − ptc) (7)
vi = e2 • (pti − ptc) (8)

and e1 and e2 being the two eigenvalues with the largest eigen-
values, pti as the vector containing the xyz-coordinate data for a
point and ptc being the centroid of the neighbourhood.

2.4 Classification Results

The results of application to two buildings in Figure 2, and an in-
dustrial plant in Figure 3 are shown. Both used a constant neigh-
bourhood size of fifty points due to good average resolution of the
point clouds. The surface and boundary detection were applied to
every point with a variance tolerance of 0.0001 (from user trials).
The major problems occur when the density of the point cloud
changes or is too low. This can be seen in some of the struc-
tures in Figure 3 and with the recessed doorways and windows
in Figure 2. One solution is to thin the point cloud so that the

distribution becomes more consistent. Care must be taken as this
can result in a loss of information that may be detrimental to the
results.

Figure 2. Point cloud from a section of the Midland rail yards
in Perth, Western Australia. The classification results are shown
with blue representing surfaces, red representing edges and green
representing boundaries.

Figure 3. Leica test data of an industrial plant. The classification
results are shown with blue representing surfaces, red represent-
ing edges and green representing boundaries.

3 SEGMENTATION

Segmentation is a straight forward (although not always easy)
process to group common surface points. Often region growing
is used on the available information channels to segment the sur-
faces based on whether they are not significantly dissimilar to its
neighbouring points. Since the edge and boundary points have al-
ready been identified by classification, this can be used to easily
segment the point cloud.

Region growing starts by selecting an arbitrary point that has been
classified as a surface point to use as a seed point and labelling
it with a new surface label (if it does not already have one). The
neighbouring points are then examined, starting from the clos-
est point, and these points are added sequentially to the surface
group until a non surface point is found or the distance from the
seed point exceeds some limit. If the point being added has been
labelled as belonging to a different surface group, then both sur-
face groups are merged. This process is repeated with each sur-
face point as the seed point until all points have been examined.
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If a surface group contains to few points, then it may have to be
ignored as having too few points to be useful.

1: procedure SEGMENTATION(Points Xi)
2: for i = 1 to n do
3: if Xi is a surface then
4: if Xi = Unlabelled then
5: Si← new label
6: end if
7: Get k nearest neighbours (Nj) for Xi

8: for j = 1 to k do
9: if Nj is a surface then

10: Label Nj the same as Xi

11: else if Nj is a surface and labelled then
12: For all points labelled the same as Nj , la-

bel the same surface as Xi

13: else
14: Break from loop since this is a

edge/boundary point
15: end if
16: end for
17: end if
18: end for
19: return
20: end procedure

Figure 4. The segmentation algorithm.

The segmentation algorithm (Figure 4) uses the classified edge
and boundary points (found by the methods previously outlined)
as a crude form of cut plane to stop the region growing crossing
from one surface to another. Once the points are segmented, a
surface may be fitted to groups so that intersection between sur-
face can be determined and near edge points can be reintegrated
into the surfaces.

Figure 5. The segmentation results of the Midland rail yards in
Perth, Western Australia, using the classification results.

Results of the segmentation algorithm applied to the data sets
used in the previous section are given in Figure 5 and Figure 6.
One of the biggest problems is the fact that some of the surfaces
that we know to exist have be dropped out or ignored. This can
be seen in places such as the doorways and wall recesses. This is
due to having to few points on these surfaces classified as surface
points. However, this problem comes more from the sampling
process than the segmentation process since only a few points
are taken across these surfaces (such as around the doorways)
due to the high incident angle (often seen in ALS point clouds).
However, it is not always possible to get an ideal sampling, so
other methods need to be developed to deal with this, such as up-

Figure 6. The segmentation results of the Cyclone test data of an
industrial plant using the classification results.

sampling (Attene et al., 2003) and edge/step function fitting at
discontinuities (Vosselman and Dijkman, 2001).

4 LOCAL INTERSECTION OF SURFACES

Often the intersection of surfaces are the only information needed.
Such instance are when the point clouds are being used to gen-
erate vector models or 2D floor or elevation plans. To find this,
a surface must be fitted to the segments and the intersection be-
tween the surfaces calculated. While this is a trivial problem for
planar surfaces, it becomes increasingly complex with non planar
surfaces. In this case, a local-based method to determine the in-
tersection of surfaces is often used (Attene et al., 2003) (Cooper
and Campbell, 2004).

The first step is to determine which points for a surface are adja-
cent (or close to) another point on another surface. One method
is to apply the boundary detection method outlined earlier to only
the edge points to determine if the points could be positioned
near an edge. Then these points can be checked to see if another
boundary point for a surface is within a certain distance. In prac-
tice however, it is just as computationally efficient to check each
surface point to see if another point belonging to a different sur-
face can be reached.

Figure 7. The local intersection point of two surface points de-
fined by where the circles met

The pair of points found are then used to determine the local op-
timal edge point between the two based on a specified cost func-
tion. The idea is to extend the boundary of the surface along
the local plane to define the intersection (analogous to first or-
der approximation of the surface), and to grow two circles along
these planes and set the edge point at where they met (Figure 7).
This assumes that the distance to the intersection from the surface
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boundary is small so that any effect of surface curvature is negli-
gible. The first step is to get the approximate normal direction for
each point and check to make sure that an intersection is possible
by checking the angular difference.

θ = arccos(n̂1 • n̂2) (9)

where n̂1 and n̂2 are the normal vectors for the pair of points p1

and p2. If the angular difference is too small, then the surfaces
will be considered parallel and therefore will not have any inter-
section close to the points. This occurs when there is a jump
discontinuity between two surfaces. The next step is to fit a
plane through each point based on their normal vectors. These
planes may be improved by fitting them through the centroid of
neighbourhoods surrounding the each point to reduce errors from
noise. The equation for the line of intersection for these planes
may be found by using an appropriate method such as:

M = [n̂1n̂2] (10)

b = −
�

d1

d2

�
(11)

Mx0 = b (12)

with d1 and d2 coming from the plane equations:

n̂1 • xi + d1 = 0 (13)
n̂2 • xi + d2 = 0 (14)

so that x0 being a point on the intersection and the direction of
the line a given by finding the solution to the null space of M to
give the parametric equation for the line of intersection as

l(t) = x0 + t ∗ a (15)

To give an approximate point on the intersection of the two sur-
faces, we can select some value for t. However, the further away
from the two surface points it is, the less reliable the intersection
approximation of the surfaces will be. Therefore, we should use
a value of t such that the approximation point is as close to the
surface points as possible.

The best method is maximise the cost function

MAX
t

�
arccos

�
(l(t)− p1) • (l(t)− p2)

‖l(t)− p1‖‖l(t)− p2‖

��
(16)

which is the angle between the line
−−−→
p1l(t) and

−−−→
p2l(t). This is be-

cause as the angle gets smaller, then the distance from the surface
points increases and the less reliable the intersection is. However,
this is a complex equation to find the optimal closed form solution
to (which takes up several pages). A simpler objective function
that will produce similar results is to minimise the sum of the
squared distances between the surface points to the intersection
point.

MIN
t
{‖l(t)− p1‖2 + ‖l(t)− p2‖2} (17)

Care must be taken in case the point that is returned is not close
to the surface points. This may indicate the parallel surface or
poor normal approximations. The usefulness will depend on how
good the normal vector approximations are.

Also, this method can be used to incorporate near edge points
into the surfaces. This is done by examining the near edge points
and determining which surface they could belong to based on the
local surface approximation, and if they are within the circles de-
fined on the local surface approximations. There is no guarantee
that all the edge points will be integrated with a surface or that
they will not be deemed to belong to more than one surface.

Some examples of finding the intersection points using this method
are given in Figure 8 and Figure 9. While this works for clean
data sets, it is susceptible to the noise and complex structures
shown in Figure 8 and Figure 9. However it was able to deter-
mine the intersection point of the pipe to the surface in Figure 9
and the majority of the large surface intersections in Figure 8.

Figure 8. The local intersection applied to the Midland rail yards
data set as well as the boundary points to define the extents of the
segmented surfaces.

Figure 9. The local intersection applied to the cyclone test data
set as well as the boundary points to define the extents of the
segmented surfaces.

From these intersection points, techniques such as 3D Hough
transforms (Katsoulas, 2003), edge tracking or path following,
using edge direction (Tissainayagam and Suter, 2004), region
growing and clustering can be used to fit and define edges.

5 PRINCIPAL CURVATURE DIRECTION

Another piece of useful information to have is the principle cur-
vature directions. This can be used to determine the direction of
an edge or pipe axis, as well as for finding cross sections of more
complex structures. While the two largest eigenvectors may cor-
respond to these directions, they are often too sensitive to the
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distribution of the neighbourhood and noise to be consistently re-
liable. A more reliable method to use is to fit a second order
polynomial surface to the neighbourhood of the points (based on
a given a local reference plane) and use this to determine curva-
ture direction. Another method that does not require the fitting of
a surface uses the normals of the points in the neighbourhood.

The normals in the neighbourhood are the projected onto the
plane, as well as their negative image The negative image is pro-
jected as well since we do not have a orientation for the normals
since they were found by covariance analysis. The covariance
matrix for these projected points are then found for the projected
axes and decomposed to find the eigenvalues and vectors. These
2D principal directions (eigenvectors) can then be transformed
back into the 3D coordinate system of the point cloud. This di-
rections will approximate the minimum and maximum direction
of curvature change and the corresponding eigenvalues will ap-
proximate the amount of change.

This information will be used in future applications for finding
the direction of edges and pipes, as well as the orientation of cut
planes to create cross sections of complex structures such as steel
flanges. This may also be used to recognise structures by fitting
their 2-dimensional profile, tracking edges and path following,
or cleaning up the classified edge points by determining the best
edge points.

6 CONCLUSIONS AND FUTURE WORK

A classification technique using covariance analysis to approxi-
mate curvature and to determine if the neighbourhood surround-
ing a point was a smooth surface by ensuring that the curvature
was consistent throughout (i.e. an almost zero level of variance
in curvature for the neighbourhood) was outlined . The bound-
aries were detected by a chi-squared test on the distance of the
indexed point to the centroid of the neighbourhood. A rudimen-
tary segmentation algorithm was given that used the classification
information. A localised method for determining the intersection
of surfaces was also outlined along with a method for determin-
ing the principle curvature directions from surface normals. The
general workflow for processing the points is as follows; First
the user specifies the tolerance for classification and the neigh-
bourhood size. Then every point in the point cloud is classified
based on this information and then segmented base on the out-
come. Only near edge points are then re-examined using the local
intersection method.

Further work will focus on a more detailed interrogation of the
index points based with regards to the principle curvature direc-
tions, not just the normal directions. While the local surface in-
tersection is a simple means of finding intersections of surfaces,
a more rigorous method is needed to handle discontinuities in
surfaces that do not intersect, as well as utilising all the surface
information.
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