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ABSTRACT: 
 
Biodiversity, and changes in biodiversity as a result of human and natural processes, have a prominent place in public debate. 
Sustaining biodiversity requires knowledge about its geographical distribution and pattern, as well as an understanding of the 
processes which are driving biodiversity at different scales. The biodiversity of the Mediterranean appears to result from historical 
(human) effects, as well as the geodiversity (the diversity of abiotic factors). One promising approach is the investigation of 
indicator groups and their relationships to the abiotic factors. We report the use of modeling techniques to map the distribution and 
abundance of reptile and amphibian species (probability. of occurrence), and we conclude that climate-based indices yield a higher 
accuracy in their prediction of herpetological species compared to NDVI-derived indices..  
 
For Europe the distribution/abundance of most species is quite well known, but North Africa lacks good species distribution data. 
So, reliable extrapolation/modeling methods (using limited species distribution data and available geo-diversity data derived from 
remotely sensed and climatic data) can be of great importance for establishing biodiversity indices (hotspots) in these data scarce 
areas.

                                                                 
*  Corresponding author.   

 
 

1. INTRODUCTION 

1.1 General Instructions 

Explaining the variation in species diversity at various scales 
(local, regional, continental and global) is a key problem in 
ecology, and an understanding of these phenomena would allow 
management to perhaps better integrate human activities with 
natural processes. Biodiversity is measured in many ways – 
species richness is a classic method (number of species at a site 
or habitat), but concepts such as evenness, density, and 
abundance of species give insights to this concept. The task of 
explaining, and ultimately understanding, biodiversity is 
complicated simply because environment itself is complicated, 
with many interacting biological, physical, and human 
(historical) factors. And of course these factors interplay and 
become important (and less important) at different scales.  Our 
approach has been to initially ‘simplify’ our view of the 
modelling problem by using presence and absence data for 
species, as well as focussing on climate as the main driver of 
biodiversity at a regional and continental scale. In addition, we 
argue that climate may be construed using time-series of 
remotely sensed imagery as a proxy, or directly from 
interpolation of climate station data.  
 
Ecological theory indicates that at sub-continental (areas > 106 
km2) or continental scales, productivity or energy flow through 
an ecosystem is considered a major determinant of species 
diversity (Currie, 1991; Rosenzweig & Abramsky, 1993; Said, 
2003; Said et al., 2003; Wright et al., 1993). This energy is 
often estimated from models or indirectly from other variables 

and often used interchangeably with ‘net primary productivity’ 
(NPP) (Gaston, 2000). However, the direct estimation of energy 
is difficult at continental or sub-continental scales (Box et al., 
1989; Currie, 1991; Owen, 1988; Said et al., 2003). 
Consequently, at regional scales, NPP is typically estimated 
from climatic data collected at scattered sampling points that 
are extrapolated in order to characterize productivity over a 
large region. However, such climatic-based models assume that 
vegetation cover is ‘natural’ and ipso facto under the control of 
climate. Further, at finer scales, it is argued that vegetation 
productivity is also influenced by non-climatic factors such as 
soil nutrient and structure, topography, disturbance and landuse. 
Therefore, the maximum Normalised Difference Vegetation 
Index (NDVI) derived from satellite data may provide an index 
of ecosystem processes and productivity compared to climate-
based models due to the fact that it is spatially-explicit. NDVI, 
and increasingly other related ecosystem variables e.g. leaf area 
index (LAI) have been related to distribution of plant and 
animal species diversity (Jorgensen & Nohr, 1996; Oindo et al., 
2000; Oindo & Skidmore, 2002; Said, 2003; Said et al., 2003; 
Walker et al., 1992).  
 
Biodiversity studies that aim at understanding reasons behind 
the presence-absence of specific species at certain locations 
often rely on maps derived from image interpretation coupled 
with field work. Images used represent mostly a single frame to 
cover the study area, or - at best – of a few repeats at different 
dates. Discussions frequently focus on resolution and scale. 
Habitats however often show a higher temporal (seasonal) 
variability than a spatial one. This characteristic is in the past 
poorly used to support mapping due a lack of images (or due to 



 

cash shortages to purchase them). In recent years however, the 
use of NOAA-AVHRR, MODIS and SPOT-Vegetation data 
offered the option to study and gain insights of temporal 
dynamics due to their almost daily global revisiting frequency; 
this gain simultaneously implie a loss regarding spatial 
resolution (250m to 7km spatial resolution at a 10-dayly 
availability of free synthesis products). 
 
Traditionally, vegetation monitoring by remotely sensed data 
has been carried out using vegetation indices, which are 
mathematical transformations designed to assess the spectral 
contribution of green plants to multi-spectral observations 
(Maseli, 2004). A number of studies have shown that the 
normalised difference vegetation index (NDVI) derived by 
dividing the difference between infrared and red reflectance 
measurements by their sum provides effective measure of 
photosynthetically active biomass (Sarkar and Kafatos, 2004; 
Justice et al., 1985; Sellers, 1985; Drenge and Tucker, 1988; 
Ringrose et al. 1996; Maggi and Stroppiana, 2002; Weiss et al., 
2004; Unganai and Kogan, 1998; Archer, 2004). Several studies 
also discussed the suitability of temporal NDVI profiles for 
studying vegetation phenologies, especially those of crops 
(Groten and Octare, 2002; Gorham, 1998; Hill and Donald, 
2003; Uchida, 2001; Murakami et al., 2001).  
 
Various authors have sought to map land-cover phenology, 
dynamics and degradation through multi-temporal NDVI data 
(e.g. Cayrol et al., 2000; Budde et al., 2004; Ledwith, 2000; 
Eerens et al., 2001; Brand and Malthus, 2004; Souza et al., 
2003).   
 
An alternative approach is to use climatic data, captured by 
networks of weather stations, to represent the variation in 
environmental conditions affecting the distribution of species. 
Generally in ecology, two main hypotheses have been advanced 
that relate species diversity to climatic parameters; (i) Climatic 
stability hypothesis whereby stable climates permit a constant 
influx of resources leading to increased densities of species 
(Pianka, 1983) and (ii) Intermediate disturbance hypothesis 
whereby irregular or unpredictable climatic variation may 
function biologically as a form of disturbance and maintain 
herpetofauna species and their assemblages away from the 
equilibrium (Connell, 1978). In this study, annual mean 
temperature, annual mean precipitation and precipitation 
seasonality (coefficient of variation) were employed as 
measurements of climatic stability. Although they are 
temporally variable, they are nevertheless predictable since they 
are cyclic in nature (Owen, 1989). Likewise, measures of 
irregular or stochastic variability of climate were estimated by 
the maximum and minimum temperatures of record. 
 
The aim of this study is to test whether climate-based, or 
NDVI-derived data, offer the highest accuracy in modelling the 
distribution of herpetological species.   
 
 
 

2. METHODS 

2.1 Data 

Data available for the NDVI part of the study  concern geo-
referenced and de-clouded SPOT-4 Vegetation 10-day 

composite NDVI images (S10 product) at 1-km2 resolution 
from April 1998 to April 2005 (7 years data; 252 images) as 
obtained from www.VGT.vito.be. Declouded means: using by 
image and pixel the supplied quality record, only pixels with a 
‘good’ radiometric quality for bands 2 (red; 0.61-0.68 µm) and 
3 (near IR; 0.78-0.89 µm), and not having ‘shadow’, ‘cloud’ or 
‘uncertain’, but ‘clear’ as general quality, were kept (removed 
pixels were labelled as ‘missing’). NDVI indicates chlorophyll 
activity and is calculated from (band 3 - band 2) / (band 3 + 
band 2). 
 
2.2 Image Processing 

Using the ISODATA clustering algorithm of Erdas-Imagine 
software and all 252 NDVI image data layers, one unsupervised 
classification run was carried out to generate a map with a pre-
defined number of classes (45 classes). Unsupervised indicates 
that no additional data were used or expert’s guidance applied, 
to influence the classification approach. The maximum number 
of iterations was set to 50 and the convergence threshold was 
set to 1.0. Each iteration performs an entire classification, and 
was "self-organizing" regarding the way in which it located the 
clusters that are inherent in the data; the ISODATA algorithm 
minimizes the Euclidian distances to form clusters (Erdas, 
2003; Swain, 1973). Of the produced map, selected NDVI-
profiles (annual averaged profiles) are graphically presented 
and their spatial representation is shown. As reference, the map 
units represented by the selected NDVI-profile classes are also 
shown on a 90m SRTM-DEM (Digital Elevation Model) that is 
visually improved by adding hillshade features. 
 
 
2.3 Climate data processing 

Temperature and precipitation-related indices are important for 
explaining the distribution of herp species diversity and their 
assemblages in the Mediterranean (Gasc J. -P. et al., 2004). 
Climatic data layers for this study were obtained from the 
WORLDCLIM database which consists of precipitation records 
from 47,554 locations, mean temperature from 24,542 locations 
and minimum and maximum temperature for 14,835 locations. 
The climatic measurements are interpolated using mainly thin 
plate smoothing splines. All the layers were obtained at 8 x 8 
km and in geodetic coordinate system. The relevant layers were 
then clipped using the study area boundary. For a full 
description of the database, see Hijmans et al., (2004).  
 
All environmental predictors were subsequently aggregated in 
ArcGIS® to the 10 x 10 Km UTM standard sampling grid by 
specifying: Max as the operation to perform on aggregated 
values of Maximum Average NDVI and Maximum temperature 
of record; Mean as the operation for annual mean temperature 
and precipitation; Min operation for the minimum temperature 
of record and; the value of the centre pixels was taken for the 
derived variables e.g. standard deviation. The climatic and 
NDVI predictors used are described in table 1 below.  
 
 



 

 
 
 

 

Table 1: List of environmental predictors used to model 
herpetological species distributions 
 
 
 
 

3. RESULTS AND DISCUSSION 

Figure 1a shows 11 selected and at the bottom all 45 generated 
NDVI profile classes. For clarity, only annual averages of the 7-
year profiles are presented in the figure. The variation in 
behaviour between profiles differs considerably (1a). Figure 2b 
suggests that in July a gradual gradient exists from rather low to 
very high NDVI values. Possibly this relates to a weather 
defined gradient based on latitude and/or altitude.  
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Figure 1a: Selected averaged annual SPOT NDVI-Profile 
classes,  
Figure 1b:All 45 NDVI-Profiles generated for the specified area 
(see Fig.2).  
 
Equally different is the area presented by each of the profiles 
(Figure 2). The map indicates a clear spatial stratification that is 
caused by a combination of weather, soil, terrain, and land use 
characteristics. This logic can be reversed: the NDVI-profiles 
reflect and are good indicators of the environment in which the 
ecosystems occur. Use of the temporal dimension and NDVI 
values as an index for habitat / ecosystem functioning, provides 
an untapped stratification tool for mapping. The down-side is 
that the product has a scale of 1:250.000 at best. 
 
A key for effective monitoring and studying of natural 
resources is to define map units ‘of interest’ on the basis of their 
behaviour in time as can be detected by the chosen procedure. 
 

Name  Description Unit 

(A) Climatic 
predictors 

    

BIO 1 Annual mean temperature  °C 

BIO 5 Maximum temperature of the warmest 
month 

 °C 

BIO 6 Minimum temperature of the coldest 
month 

 °C 

BIO 12 Annual mean precipitation mm 

BIO 15 Precipitation seasonality (Coefficient 
of variation) 

  

   

(B) NDVI 
predictors 

    

MavND Maximum average NDVI   

SD Standard deviation of NDVI   

CV Coefficient of variation % 
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Figure 2. Spatial location of the shown 11 NDVI-Profile classes 
(see Fig.1), presented besides a 90m SRTM DEM product. In 
total, of the area shown, 45 classes were prepared (user 
specified number). 
 
Amphibian and Reptile species distribution maps were derived 
from the “Anfibios y Reptiles de España” Atlas (Pleguezuelos et 
al., 2004). For each species, the distributional data was 
aggregated at a 10 x 10 km UTM resolution sampling grid 
following the European network of meshes approach, albeit at 
10 km2 resolution (Gasc J. -P. et al., 2004). The observations 
are coded in a binary format i.e. presence/absence (1 & 0). The 
database contains > 5,000 observations pertaining to the 67 herp 
species. 
 
Generalised Linear Models (Chambers & Hastie, 1992; Gill, 
2000; McCullagh & Nelder, 1989) were used to fit different 
models using the S-Plus® software for the NDVI-profile class 
data, as well as the climate data (Table 1). A typical result is 
detailed (for the Spanish data set) for the distribution (figure 3a) 
for a species Salamandra salamandra modelled using climate 
data (figure 3b) and NDVI data (figure 3c). 
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Figure 3: Spatial distribution of Salamandra salamandra in 
Spain (a) documented distribution on 10 x 10 Km UTM square, 
1981 – 1997 (b) predicted distribution by climatic model (10 x 
10 Km resolution), (c) predicted distribution by NDVI model 
(10 x 10 km resolution). 
 
 

 
 
 
Figure 4: Spatial distribution of the Mediterranean distribution 
on 10 x 10 Km UTM square, 1981 – 1997 predicted distribution 
by NDVI model. 
 



 

Since the species dataset used in this study was sufficiently 
large (> 5,000 observations), we could use a quasi-independent 
dataset for evaluation purposes. This was obtained by randomly 
splitting the original dataset into a training (n = 1000) and test 
(n = 1000) set – ‘split-sample approach’. The accuracy of the 
models were tested using the kappa statistic (Cohan, 1960; 
Skidmore) and presented in Tables 1 and 2. 
 

 
 

4. DISCUSSION 
 
 
Remotely-sensed NDVI indices were less accurate predictors of 
herpetological species distributions compared to eco-climatic 
parameters (Table 1 and 2). This concurs with Said et al., 
(2003) who found similar results when comparing climate vs. 
NDVI in predicting mammalian species richness in East Africa. 
 
These results are consistent with natural history for these taxon 
groups as temperature is known to be important for explaining 
reptile distributions while humidity (and vegetation cover) 
plays the same role for amphibians (Gasc J. -P. et al., 2004). 
Visually, maps based on NDVI indices also appear less smooth 
compared to those based on climate. This could be attributed to 
the fact that climate depicts less variation over short distances 
compared to the high variability of vegetation cover which 
manifests itself by more contrasted values over proximate cells 
in the NDVI images. 
 
The results raise some interesting issues about further field 
sampling for biological data, and their spatial analysis. The 
larger the measuring or collecting ‘grid’, the more species are 
counted. This will give often a wrong impression of the 
diversity and richness of a certain area. For example, a 5x5 
meter sample area might contain 1 lizard-species and may be 2 
animals of that species, while in a 10x10 meter sample 10 
animals of the same species might be present, but only 1 animal 
of another species. A snake might ‘pass by’ in that sample, but 
the next hour it might be elsewhere. All is depending on the 
habitat requirements and niche-size, but on the territorium size 
as well. So what are the best and most reliable distribution maps 
to represent biodiversity and species richness of a certain 
region? 
 
The issue of niche- and territorium size is a complicated matter. 
It looks like there might be a relationship between body size 
and territorium size. Which is understandable, as most 
amphibians and reptiles are predators and the larger the animal, 
the more insects or other prey they need. 
 
Habitat preferences/requirements is another factor influencing 
the nice and/or territorium size. Amphibians are mostly water-
bound, especially during the breeding season, afterwards most 
of them prefer moist environments. While most reptiles are less 
or not water-bound, etc., but may be more restricted to food 
availability (insects, mice) or the presence of hiding places, 
shelter, e.g., rocks, holes in the soil, dead leaves. These factors 
need to be built into further analysis of these data sets. 
 
Another interesting issue is the relation between body 
size/weight, daily activity and climate. Under certain 
climatological conditions the daily activity of amphibians and 
reptiles might be limited and this might have consequences 
concerning the possibility to gather enough food or to 
reproduce. It is known that the colder the climate, the smaller 

the animals, reptiles even become ovoviviparous and get a 
darker skin-colour. Therefore, it might be possible to predict the 
maximum body-weight under a certain climatological 
conditions. In addition the solar radiation of a location will be a 
critical factor in modelling biodiversity. 
 
As described above, the different climatological factors like 
temperature (air and surface), radiation, exposure, humidity, 
will have a strong influence on daily activity. It might be 
possible to predict the daily time-interval (per season , month or 
week) when amphibians or reptiles can be observed during their 
daily activities (e.g., in the morning (warming-up and 
fouraging), a mid-day rest (hiding because of to hot) and 
afternoon activity). This is likely very much 
correlated/determinated by their most efficient metabolic rate in 
relation to the environmental/climatological variables. 
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Table 1: NDVI predictors and their proportion of explained deviance for individual species. 

 Parameters 
  
Selected herp species 

  Lacsh Blacin Viplat Maccuc Alycis Alyobs Hylarb Hylmer Salsal Tribos 
Threshold 0.25 0.25 0.11 0.07 0.20 0.38 0.17 0.13 0.37 0.25 
Kappa cal 0.39 0.12 0.10 0.01 0.31 0.28 0.17 0.08 0.50 0.32 
Kappa eva 0.32 0.10 0.10 0.01 0.25 0.24 0.15 0.07 0.41 0.34 
 
 
Table 2: Selected climatic predictors and their proportion of explained deviance for individual species. 

Parameters  
 
Selected herp species 

  Lacsh Blacin Viplat Maccuc Alycis Alyobs Hylarb Hylmer Salsal Tribos 
Kappa cal 0.60 0.45 0.27 0.31 0.35 0.56 0.28 0.50 0.44 0.30 
Kappa eva 0.58 0.37 0.29 0.35 0.31 0.49 0.25 0.47 0.42 0.34 

 


