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ABSTRACT: 
 
This study deals with some applications of the concepts developed by the Theory of Evidence, in remote sensing digital image 
classification.  Data from different sources are used in addition to multispectral image data in order to increase the accuracy of the 
thematic classification map.   Terrain elevation, mean annual temperature , fraction image data of vegetation and shade, NDVI, image 
texture, as well as probability images estimated from the multispectral image data, are arranged in form of layers in a GIS-like 
structure.  Layers representing belief and plausibility concerning the labeling of pixels across the image are then derived and later used 
to help identify mislabeled pixels in the thematic classification map.   Preliminary tests using belief were performed over an area 
covered by natural forest of Araucaria showing some promising results. 

                                                           
* Corresponding author. 

  
1. INTRODUCTION 

 
In remote sensing supervised image classification, there are a 
number of distinct factors that may contribute to lower the 
accuracy of the thematic image.  Spectral similarity among 
classes, non-normality of the within-class data distribution, lack 
of uniformity in solar irradiation across the scene due to terrain 
topography are, among others, well known causes for the poor 
accuracy that sometimes results when using classifiers such as 
the Gaussian Maximum Likelihood (GML). Different 
approaches have been proposed by many authors to alleviate 
each specific cause of low accuracy in the classification process.  
In this study, we test a method for improving the accuracy in the 
process of labeling  image data by using ancillary data.    
Different approaches to handle this problem in a quantitative 
way have been proposed in the literature.  A comprehensive 
overview of the available alternatives to introduce ancillary data 
into the pixel labeling process can be found in Hutchinson 
(1982).  That author points out three general approaches to 
combine ancillary data with multispectral image data: before, 
during or after classification.  An example of the before 
classification procedure is the stratification of the data into 
smaller areas or strata that are then processed separately.  The 
rationale behind this approach consists in reducing the class 
variances within each stratum, lessening the likelihood of 
confusion among classes.  A large vegetated area, for example, 
may be stratified according to the terrain elevation, each stratum 
comprising more homogeneous vegetated areas showing 
individually lower variability.   Training and classification can 
then be performed independently on each stratum and the 
results merged together.  Ancillary data can also be incorporated 
during the classification process.   Data can be organized in the 
form of additional data layers (non-spectral channels) that are 
then used jointly with the conventional spectral bands in a 
classifier. Another approach  proposed by Strahler (1980) 
consists of making use of ancillary data to estimate, in a more 
realistic fashion, the “a priori” class probabilities.  In the post-
classification approach, areas of confusion, i.e., pixels that have 

been assigned to classes that are spectrally very similar, are sorted 
individually and assigned to the most likely class by making use 
of information that can help discriminating distinct classes, such 
as digital elevation models data (DEM), slope or aspect. The 
decision rules in this case are usually deterministic in nature. 
These approaches imply the use of multisource data, sometimes 
including qualitative data, i.e., variables that originally are not in 
numerical form.  Bruzzone et al. (1997) investigated the use of 
Landsat-TM image data along with texture and ancillary data 
(terrain elevation, slope and aspect) in the classification of 
spectrally complex areas (rural areas), using both parametric 
(statistical) e non-parametric (neural networks) classifiers.  In the 
statistical approach, a total of 17 features were introduced, 
including both multispectral image data and texture data.  In this 
case, the ancillary data (terrain elevation, slope and aspect) were 
used to improve the estimates of the land-cover classes a priori 
probabilities.   The evidential approach expressed in the 
Dempster-Shafer  theory of evidence is investigated by Lee et al. 
(1987). In addition to a comprehensive review of the basic 
concepts in this theory, the authors explore statistical and a 
evidential methods for combining multi-source remote sensing 
image data and spatial data in general.  They tested both methods 
using Landsat MSS image data, dealing with the visible and 
infrared bands as two  separate data sources.  The results reported 
in their work, show that the statistical approach performed better 
than the evidential method.  It should be noted, however, that the 
data used in the experiment can be reasonably modeled by the 
multivariate Gaussian distribution.  It does not take advantage of 
one main advantages of the evidential method, i.e., of the fact that 
it is not distribution based.  Evidential methods were also explored 
by Moon (1990) to integrate geological and geophysical data. 
Gong (1996) compares evidential reasoning with neural networks 
methods in the classification of multisource spatial data.   The 
author makes use of multisource data set which includes Landsat-
TM image data, aeromagnetic, radiometric and gravity data for 
geological mapping purposes.   This approach allows the 
introduction of data layers such as the ones commonly used in 
GIS into the classification process, along with multispectral image 



data.   In addition, the theory of evidence also allows the 
introduction of the concept of uncertainty or ignorance into the 
classification process.  Uncertainty or ignorance in this case can 
be caused by incomplete data or lack of sufficient information. 
The aim in this study is to investigate the use of the Theory of 
Evidence for vegetation cover classification purposes.  
Information conveyed by auxiliary data is used to generate 
layers of belief and plausibility as proposed by Dampster-
Shafer.  These layers may be later used to detect mislabeled 
pixels in the thematic image produced by a classifier 
implementing the available multispectral image data set, such as 
the GML classifier. In this study a procedure implementing the 
information conveyed by belief is tested in the identification of 
areas covered by natural forest of Araucaria.  Araucaria 
angustifolia is a native conifer species that occurs in association 
with other gymnosperma species, the Podocarpus lambertii, as 
well as several trees or shrubs such as Slonea monosperma, 
Symplocus uniflora, Ocotea pulchella, Rapanea venosa, Feijoa 
sellowiana, Eugenia opaca and epiphytes such as Polypodium 
squamulosum and Tillandsia tenuifolia (Ferri, 1980).  The areas 
covered by natural forest of Araucaria are restricted to small 
areas in southern Brazil and have proved to be particularly 
difficult to be accurately identified by means of multispectral 
image data only, such as Landsat TM data.   To alleviate this 
problem and improve the classification accuracy, the principles 
provided by the theory of evidence are here applied. In addition 
to Landsat multispectral data, we have also investigated other 
possible sources of data that may bear discriminant power with 
respect to the label natural forest of Araucaria.  A total of 15 
auxiliary variables were tested, namely digital elevation data, 
mean annual temperature and precipitation, soil classes, NDVI, 
fraction data of shade and vegetation, and 8 additional variables 
associated with image texture. An additional layer conveying 
the joint contribution of the multispectral bands was also added 
to this set. In a preliminary step, we investigated the relative 
importance of each individual variable, i.e., its discriminant 
power with respect to the label natural forest of Araucaria, in 
the context of the scene being analyzed. The information 
conveyed by these 16 variables was initially expressed in terms 
of evidence in support of the label natural forest of Araucaria, 
for every pixel in the image.  
The evidence in support of the label natural forest of Araucaria 
was estimated for each individual variable.   For the variables 
presenting a normal distribution, the evidence was estimated by: 
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where Gi(X) represents the GML decision function associated 
with class ωi , estimated in each case for the variable under 
consideration only;  a indicates the class natural forest of 
Araucaria and m the number of spectral classes present in the 
scene. In the case of the variables that are not normally 
distributed, membership functions and expert knowledge were 
used. 
The layers expressing evidential data were then structured in a 
GIS-like format, in layers spatially registered and within the 
interval [0,1], with 0 meaning no evidence supporting the label 
natural forest of Araucaria and 1 indicating full evidence 
available.  In this context, an additional layer bearing the 
evidential information conveyed by the spectral data is added to 
the set. This set of evidential information layers were spatially 
registered, geocoded and then combined according to the 

Dempster-Shafer approach to produce the layers of belief and 
plausibility. 
 

2. THE DAMPSTER-SHAFER THEORY OF 
EVIDENCE 

 
In this section some basic concepts of the theory of evidence are 
reviewed.  In the context of this study, the two most relevant 
characteristics of the Theory of Evidence are: (1) the introduction 
of multi-source data, each data source being treated separately in a 
way that does not require all data being originally in numerical 
form, and (2) implementing the concept of uncertainty or 
ignorance (Lee et al., 1987, Richards and Jia, 1999, Eastman, 
1999).   
One feature that distinguishes the theory of evidence from other 
commonly used methods implementing multi-source data relates 
to the data form.  Most of the methods implementing multi-source 
data require that the data must be in numerical form.  The theory 
of evidence allows, however, different data sources to be treated 
separately, not requiring all variables to be originally in numerical 
form.   In this case, the translation of thematic data into numerical 
form is performed by the analyst by assigning to each variable the 
amount of evidence in support of an hypothesis,  (in the present 
case the label natural forest of Araucaria),  producing in this way 
layers of evidence.   Whenever the data is originally in numerical 
form (such as terrain elevation, for instance), the task of 
estimating the amount of evidence supporting the hypothesis can 
be more easily done by making use of probability functions as in 
(1) or membership functions.   The amount of evidence supporting 
a given hypothesis normally ranges in the interval [0,1].   If, 
however, a certain degree of uncertainty or ignorance with respect 
to the pixel’s label is present, then this fact can be taken into 
consideration by restricting the upper limit of this range 
(maximum evidence) to a lower value, say, 0.8, leaving the 
remaining evidence (20 %) as ignorance or uncertainty. The 
Theory of Evidence makes use of the following concepts: mass of 
evidence also known as basic probability assignment, belief 
known by some authors as support, plausibility and belief interval, 
also known as evidential interval (Richard and Jia, 1999, Lee et 
al., 1987, Gong, 1996).  The mass of evidence or basic probability 
m(X) estimates the evidence available in support of a given 
hypothesis.   These concepts can be better illustrated through an 
example.   Consider a classification problem consisting of four 
classes ω1, ω2 , ω3 and ω4.    In addition to being exclusive, assume 
that this set is exhaustive, which means that in practice one of the 
classes could be referred to as “other”, (Lee et al., 1987).   Let us 
assume that, for a pixel under consideration, the likelihood for the 
four classes can be estimated to be proportional to 2:2:1:1.  
Further, assume that a degree of uncertainty exists, due to the 
quality of the data or to the classification procedure. The analyst 
may estimate that under the present circumstances his level of 
confidence in the labeling of this pixel is about 90%, leaving the 
remainder 10% as uncertainty or ignorance.   Therefore, amount 
of evidence available can be expressed by the mass of evidence (or 
the basic probability assignment) -m- as follows: 
 

m(ω1)=0.3     m(ω2)=0.3     m(ω3)=0.15      m(ω4)=0.15     
m(U)=0.1 

 
where U stands for the uncertainty in the labeling process.   
Obviously, these basic probabilities should add to one and may be 
derived in an empirical way from the knowledge the analyst has 
about the nature of any particular situation.   This concept can be 
further generalized by assuming that class ω3 actually represents 
the union of classes ω1 and ω2 (ω1∪ω2), i.e., the information 
available allows the analyst to allocate, for the case of a pixel 
under consideration, a mass of evidence m(ω3) of 0.15, meaning 



that this is the degree of evidence available, indicating that the 
pixel belongs to either ω1 or ω2 , although it can not be said to 
which one.   
Different ways to estimate the mass of evidence can be seen in 
the literature.  Gong (1996) makes reference to two basic ways 
of training an evidence based algorithm, i.e., of estimating the 
mass of evidence: the occurrence-frequency tables and the 
normal distribution model (similarly to the maximum likelihood 
classifier).   Lee et al. (1987) proposes the following procedure 
to assign the mass of evidence to each particular pixel: first 
estimate the uncertainty in the labeling process and second, 
assign the remaining mass of evidence based on the relative 
likelihood of each label.  
If two independent sources of information (a, b) are available, 
the combined mass of evidence ma,b(z)  can be obtained  by 
means of the orthogonal sum: 
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where ∅ represents the null set.   The orthogonal sum (2) can be 
applied repetitively whenever more than two sources are 
present.  The belief or support (represented by bel) for a given 
hypothesis represents the total support for an hypothesis.   It can 
be estimated by adding the masses of evidence supporting the 
hypothesis, i.e., the label under consideration (X) and any of its 
subsets (Y).  In a more concise notation: 
 

∑ ⊆∀= XYYmXbel )()(  
 

In the above example, the beliefs are: 
 

bel (ω1) = 0.3,   bel (ω2) = 0.3,   bel (ω3) = 0.75 
 
 The plausibility denoted by plau of an hypothesis is 
defined as the complement of the total support for contradictory 
hypothesis: 
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In the case of the previous example, the plausibilities for ω1, ω2 
and ω4 are: 
 

plau (ω1) = 0.55,    plau (ω2) = 0.55,    plau (ω4) = 0.25  
 

A straightforward interpretation can be assigned to these two 
concepts: belief represents the firm evidence available in 
support of a hypothesis, whereas plausibility represents the 
maximum amount of evidence supporting the hypothesis, i.e., 
the degree to which the hypothesis seems to be correct or, in 
other words, the evidence favoring the hypothesis even 
considering that firm data may be missing.   Belief and 
plausibility can therefore be understood as the minimum and the 
maximum amount of available evidence in favor of a hypothesis 
or, in this case, a particular pixel labeling. 
The belief interval or evidential interval is defined as the 
difference between the plausibility (upper bound) and belief 
(lower bound) and can be seen as the uncertainty in accepting or 
rejecting the hypothesis. 
 The approach provided by the Theory of Evidence may be 
helpful for image classification problems in remote sensing 

applications, in cases where no accurate conclusions can be drawn 
from the available multispectral image data only.  
 
 

3. CASE STUDY 
 
The methodology provided by the Theory of Evidence was tested 
in this study, in the identification of areas covered by natural 
forest of Araucaria.    A test area in southern Brazil was used for 
testing purposes. The required computer programs were produced 
in MATLAB environment.  
The implementation of this methodology implies three steps: (1) 
the identification of the variables to be used in this problem, i.e., 
variables showing discriminating power with respect to the label 
natural forest of Araucaria, (2) a criterion to estimate the 
associated degree of uncertainty, and (3) a criterion to estimate the 
amount of evidence provided by each individual variable.   
Initially a survey of the variables which are thought to bear a high 
degree of correlation with the label natural forest of Araucaria 
was performed.    In addition to multispectral image data, the 
following variables were initially investigated: terrain elevation 
above sea level, mean annual precipitation, mean annual 
temperature, category of soil, NDVI, fraction data of vegetation 
and shade, and image texture estimated by the following eight 
variables: contrast, correlation, dissimilarity, entropy, 
homogeneity, mean value, angular momentum and standard 
deviation.  These data, obtained from different sources, were 
arranged in layers, spatially registered and geocoded in a GIS 
format. 
The next step consisted in expressing these layers in terms of mass 
of evidence supporting the hypothesis natural forest of Araucaria.   
Two criteria are required at this stage, one to estimate the amount 
of evidence and another to estimate the amount of uncertainty 
involved.  It is generally more convenient to approach this 
problem by estimating the uncertainty.   In this study we follow 
the approach proposed by Lee et al. (1987), estimating the 
uncertainty associated with each individual variable by the 
classification error in the corresponding thematic map.   The 
accuracy in this case refers to the user’s accuracy, which estimates 
the probability of any given pixel in the thematic image being 
correctly classified (Congalton, 1991).   
 

Variable User’s Accuracy 
Multi-spectral data 0.897 
Terrain elevation 0.510 

Mean annual 
temperature 

0.515 

Mean annual 
precipitation 

Negligible 

Soil categories Negligible 
NDVI 0.463 

Fraction of shade 0.513 
Fraction of 
vegetation 

0.352 

Contrast  0.338 
Correlation 0.377 

Dissimilarity 0.372 
Entropy 0.413 

Homogeneity 0.454 
Mean value 0.613 

Angular 
momentum 

Negligible 

Standard deviation 0.360 
Table 1.  User’s accuracy regarding the label natural forest of 

Araucaria, yielded by each individual variable 



To this end, samples of the 21 spectral classes identified on the 
scene were collected for training and testing purposes. 
Whenever the data presented a normal distribution, the 
Gaussian Maximum Likelihood classifier was applied.  For the 
remaining cases (terrain elevation data, mean annual 
temperature and precipitation and soil categories) the Minimum 
Euclidean Distance classifier was employed.  The estimated 
user’s accuracy is shown in Table 1. Information regarding 
steps (1) and (2) can thus be obtained from data listed on this 
table. Table 1 suggests that three variables bear no 
discriminating power with regard to the problem (mean annual 
precipitation, soil categories and texture’s angular momentum), 
leaving 13 variables to be used.  The uncertainty associated with 
each individual variable can thus be estimated (1-user’s 
accuracy).   Step (3) consists in estimating the mass of evidence 
for each of the selected variables.  For the completion of this 
task, two different approaches were pursued.  For the normally 
distributed variables, equation (1) was applied. Otherwise, the 
concept of membership function associated with expert 
knowledge was employed.   In the first case, the mass of 
evidence supporting the label natural forest of Araucaria is 
estimated for each individual variable, by re-scaling the values 
produced by equation (1) to within the interval [0, (1-
uncertainty)]. For every pixel across the scene, this re-scaled 
value is assumed to estimate the mass of evidence supporting 
the label natural forest of Araucaria.  The mass of evidence 
supporting the label others is, for each pixel, equal to one minus 
the sum of the uncertainty plus the mass of evidence supporting 
the label natural forest of Araucaria, i.e., the two masses of 
evidence plus the uncertainty should add to one.  
A similar approach was applied to the variables that are not 
normally distributed (terrain elevation and mean annual 
temperature).  In this case, however, expert knowledge modeled 
by a membership function was employed to estimate the mass 
of evidence supporting the label natural forest of Araucaria and 
the label others. It is known that natural forest of Araucaria 
does not occur in areas below the elevation of 500 meters above 
sea level, and the likelihood of it occurring increases as the 
terrain elevation also increases.  Based on this knowledge, a 
digital elevation model was initially produced for the study area.   
Next, a membership function was selected to relate terrain 
elevation with the corresponding mass of evidence in support of 
the label natural forest of Araucaria, in a pixelwise fashion.   A 
sigmoid function was deemed adequate to represent this 
association.  The first control point that defines the particular 
shape of the sigmoid, i.e., the terrain elevation at which the 
mass of evidence starts rising from zero was set at 500 meters 
above sea level.   The second control point at which the 
available evidence reaches its maximum value (1-uncertainty), 
was set at the highest elevation occurring in the area (1,300 
meters). It is also known that natural occurrences of natural 
forest of Araucaria have been found only in regions where the 
mean annual temperature is lower than 18 °C.   Based on this 
knowledge, a decreasing sigmoid membership function was 
selected to estimate the mass of evidence associated with the 
mean annual temperature.   The control points in this case were 
set at 18 °C (mass of evidence equal to zero) and 14.5 °C, the 
lowest mean annual temperature in the region (mass of evidence 
equal to 1-uncertainty). As in the previous cases, the evidence 
supporting the label other was estimated according to the 
condition stated above, i.e., the uncertainty and the masses of 
evidence should add to one.  
The mass of evidence for the labels natural forest of Araucaria 
and others plus the uncertainty can then be combined in a 
pixelwise fashion to produce the combined mass of evidence for 
the label natural forest of Araucaria.  To this end, the algorithm 
known as the orthogonal sum (2) was used. Thus, layers 

displaying belief and plausibility associated with the label natural 
forest of Araucaria can be produced.   As mentioned earlier, belief 
estimates the solid evidence supporting the hypothesis, i.e., the 
available evidence that a pixel does belong to the class natural 
forest of Araucaria, whereas plausibility is the maximum 
available evidence supporting the hypothesis.  A possible use for 
the information conveyed by belief and plausibility consists in 
detecting errors of commission and omission respectively.  In this 
study it is investigated the use of the information contained in the 
layer belief.  To this end, a thematic image was produced by 
applying the MGL classifier to the 6 reflective Landsat-TM 
spectral bands.   The resulting thematic image shows the 21 land-
cover classes present on the test area.  For the purposes of this 
study, the thematic image was re-classified into two classes, 
namely natural forest of Araucaria and the remaining 20 classes, 
grouped together under the label other. The investigation was 
performed using a segment (922 rows-1947 columns) in a 
Landsat-TM scene, for which ground truth data was available.  
The availability of reliable ground truth data allowed the 
estimation of the user’s accuracy for the label natural forest of 
Araucaria as equal to 0.7209.  Comparing the thematic image data 
with the ground truth data, a number of mislabeled pixels can be 
detected, resulting in both errors of commission and omission.  As 
expected, pixels wrongly labeled as natural forest of Araucaria 
were associated with low values for belief.  Removing pixels 
labeled natural forest of Araucaria but showing low degree in 
belief is an obvious choice to improve the user’s accuracy.  The 
question at this point, however, is how to estimate a suitable value 
for the threshold to be applied to the layer belief. Obviously, the 
higher the selected value for the threshold, the lower the 
likelihood of including errors of commission in the label natural 
forest of Araucaria.   Setting the threshold at values which are 
excessively high, however, increase the likelihood of removing 
pixels correctly labeled as natural forest of Araucaria, i.e., 
introducing errors of omission in the thematic image, decreasing 
therefore the producer’s accuracy.  This fact is illustrated in 
Figure 1, which shows the user’s accuracy, the producer’s 
accuracy and the mean accuracy as a function of the threshold 
applied to belief.   As expected, low values for the threshold result 
in a large number of pixels mislabeled as natural forest of 
Araucaria (errors of commission) which translates into lower 
values for the user’s accuracy.   The number of pixels mislabeled 
as natural forest of Araucaria  decreases as the threshold 
increases, resulting in a correspondent increase in user’s accuracy 
for the label natural forest of Araucaria.  This approach, however, 
is not reasonable as the number of errors of omission starts 
increasing, leading to an increasingly lower value for the 
producer’s accuracy. 
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Figure  1  Accuracy as a function of threshold applied to belief.  

Dashed line: user’s accuracy; dash-dot line: producer’s accuracy;  
solid line: mean accuracy 



 
 Data in Figure 1 can be used by the analyst for a final decision 
about the threshold that better suits his/her needs.  In this study 
we propose a threshold that maximizes the mean accuracy in the 
thematic image, which in this particular experiment lies around 
0.0431 resulting in a user’s accuracy equal to 0.8264, a 
producer’s accuracy equal to 0.7519 and a mean accuracy equal 
to 0.7891.  The corresponding estimated values in the thematic 
image produced by the GML classifier is 0.7230, 0.7665 and 
0.7448 respectively.  A significant increase in the user’s 
accuracy and in the mean accuracy has been obtained, while a 
small decrease in the producer’s accuracy occurred. 
 

4. CONCLUSIONS 
 
In this study we present and test a methodology focused on the 
use of ancillary data to help improve the accuracy in remote 
sensing digital image classification.   A new approach aiming at 
the use of the concept of belief to increase the accuracy of the 
thematic image is proposed and tested. The proposed 
methodology is deemed especially useful whenever we are 
dealing with classes that are spectrally difficult to be identified 
accurately.  The adequacy of this methodology was assessed by 
using data available from a test area in southern Brazil, covered 
by a forest type known as natural forest of Araucaria.  This 
class is known to be difficult to be accurately classified. Tests 
were performed using Landsat TM multispectral image data and 
additional ancillary data available.   Encouraging results were 
obtained suggesting that further work would be fruitful.  It is 
especially suggested further research work with regard to the 
use of plausibility data for additional improvement concerning 
the accuracy of the thematic image. 
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