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ABSTRACT: 
 
Soil Organic Carbon (SOC) has been identified as one of the major C sinks in the global carbon cycle, of which the exact size and 
spatial distribution are still difficult to determine quantitatively. Estimation of the amount of SOC present using remote sensing is 
mostly based on the overall decrease in reflectance in the solar reflective part of the electromagnetic spectrum. However, moisture 
content and soil roughness result in a comparable decrease, resulting in ambiguous identification of a specific soil type. Depending 
on the decomposition stage, SOC contains biochemical constituents like lignin and cellulose. Absorption features related to these 
constituents can be used to determine the SOC content of the soil. We investigated nine different soil types (n=40), originating from 
a wide range of climatic zones and a large variety in SOC content (0.06 – 45.1%). Spectral measurements of all soil samples were 
performed in a controlled laboratory environment. The ability of several spectral indices related to biochemical constituents’ 
detection towards the quantification of SOC were tested. Good relations were found for indices based on the visible part of the 
spectrum and for the absorption features related to cellulose. Cross validation was used to evaluate the predictive capacity of the 
spectral indices. The results demonstrate that it is feasible to use spectral indices derived from laboratory measurements to predict 
SOC in various soil types. The results allow establishing a perspective towards spatial distributed mapping of SOC using imaging 
spectroscopy.  
 
 

1. INTRODUCTION 

Soil Organic Carbon (SOC) has been identified as being one of 
the major C sinks in the global carbon cycle. The exact size of 
this sink and its spatial distribution are difficult to determine. 
Remote Sensing is one of the techniques that can be used for a 
better estimation of the amount of SOC. Estimation of SOC 
with remote sensing is mostly based on the overall decrease in 
reflectance in the reflective part of the spectrum ((Chen et al., 
2000; Irons et al., 1989)). However, existing statistical models 
are in general useable in areas with a limited geographical 
extent. Furthermore, published relationships are mostly 
applicable only to datasets with a limited variance in SOC 
concentration and on a limited number of soil types.  
 
The biochemical composition of SOC depends on the source 
material and its decomposition stage. Since the major source for 
SOC is vegetation, biochemical constituents present in the 
vegetation can also be present within the soil. Some 
biochemical constituents are easily dissolvable and decompose 
fast (e.g. chlorophyll and anthocyanins). Other biochemical 
constituents are more resistant to decomposition and therefore 
remain in the soil longer (e.g. lignin and cellulose).   
 
Absorption features in vegetation are summarized by Curran 
(1989). Several vegetation analysis indices related to lignin and 
cellulose have been published. The Cellulose Absorption Index 
(CAI) (Daughtry, 2001; Daughtry et al., 2004) uses the 
cellulose absorption feature around 2100 nm. The Normalized 

 Difference Lignin Index (NDLI) (Fourty et al., 1996; Melillo et 
al., 1982; Serrano et al., 2002) makes use of the fact that 
reflectance at 1754 nm is influenced by lignin concentration of 
leaves, as well as by the overall foliage biomass of the canopy.  
 
In this paper we show that the amount of SOC can be related to 
the cellulose and lignin influenced wavelength ranges and 
detected with reflectance spectroscopy. The dataset contains 
samples from nine soil types and represents a large variance in 
SOC content. For comparison, the relationship between SOC 
and the overall reflectance in the visible wavelengths will be 
discussed as well. 
 
 

2. METHODOLOGY 

A selection of 40 soil samples, originating from a) ISRIC’s 
World Soil Reference Collection, b) the LOSOC-AHS2005 
field campaign and c) the MIES2004 field campaign was used 
for analysis.  The samples represent nine soil types and cover a 
wide spatial range and a large variance in SOC content (0.06 to 
45.1 %). All soil samples were sieved over a 200 μm sieve, 
keeping the smaller fraction, and analysed for SOC content 
using the Walkley Black method. The samples were divided 
into two sets, one for calibration and the other for validation. 
Both sets contain 20 samples, which represent all nine soil 
types and practically the entire range of used SOC 
concentrations. An overview of used samples, the different soil 
types and the SOC content is given in Table 1.  



 

 
 

 Soil Unit 
 

SOC 
(%) 

Code 
 

Setup 
 

Andosol1 0.1 CR930063 ASD + Lamp 
Andosol1 1.6 CR930061 ASD + Lamp 
Andosol1 6.4 CR930060 ASD + Lamp 
Cambisol1 0.2 NI930010 ASD + Lamp 
Cambisol1 1.0 NI930008 ASD + Lamp 
Chernozem1 0.2 HU9700178 ASD + Lamp 
Chernozem1 1.4 HU9700175 ASD + Lamp 
Fluvisol1 0.2 NI930006 ASD + Lamp 
Sand on Peat2 4.0 RING47 ASD + CP 
Sand on Peat2 10.7 RING05 ASD + CP  
Sand on Peat2 16.0 RING15 ASD + CP 
Histosol1 22.9 RING27 ASD + CP 
Histosol1 45.1 RING02 ASD + CP 
Sandy Loam2 0.9 G1_08 ASD + CP 
Sandy Loam2 1.5 P2_01 ASD + CP 
Sandy Loam2 2.2 P2-15 ASD + CP 
Luvisol1 0.8 NI930020 ASD + Lamp 
Luvisol1 3.0 NI930444 ASD + Lamp 
Suelo Neguev2 0.9 CR930065 ASD + Lamp 

Se
t 1

 

Suelo Neguev2 4.0 CR930067 ASD + Lamp 
  

Soil Unit 
 

SOC 
(%) 

Code 
 

Setup 
 

Andosol1 0.2 CR930059 ASD + Lamp 
Andosol1 1.8 CR930057 ASD + Lamp 
Andosol1 4.0 CR930056 ASD + Lamp 
Cambisol1 0.6 NI930009 ASD + Lamp 
Cambisol1 2.9 NI930007 ASD + Lamp 
Chernozem1 0.3 HU9700177 ASD + Lamp 
Chernozem1 2.1 HU9700174 ASD + Lamp 
Fluvisol1 0.3 NI930003 ASD + Lamp 
Sand on Peat2 4.0 RING50 ASD + CP 
Sand on Peat2 10.7 RING49 ASD + CP 
Sand on Peat2 16.1 RING28 ASD + CP 
Histosol1 23.8 RING43 ASD + CP 
Histosol1 40.2 RING01 ASD + CP 
Sandy Loam2 1.0 G1_06 ASD + CP 
Sandy Loam2 1.5 P3_08 ASD + CP 
Sandy Loam2 2.2 P5_08 ASD + CP 
Luvisol1 1.1 NI930014 ASD + Lamp 
Luvisol1 2.2 NI930445 ASD + Lamp 
Suelo Neguev2 0.7 CR930069 ASD + Lamp 

Se
t 2

 

Suelo Neguev2 3.8 CR930064 ASD + Lamp 
 1 Soil Unit according to FAO classification 

2 Soil Unit according to Local Classification 
 

Table 1: Overview of selected soil samples: Soil unit = type of 
soil according to FAO or Local classification; SOC(%) = Soil 

Organic Carbon Content in %; Code = the label of the sample in 
the dataset; Setup = measurement method with either the ASD 

and lamp or the ASD with the Contact Probe (ASD + CP). 

Spectral measurements were performed using air-dried samples, 
with an ASD Fieldspec Pro FR in laboratory setup. Six soils 
(Table 1) were measured using an ASD lamp for illumination at 
a distance of 55 cm in nadir position and viewing angle of 30۫ of 
nadir, with a 1 degree aperture angle, at a distance of 40 cm. 
The setup results in a Ground Projected Field of View of 0.38 
cm2. The three other soils were measured with an ASD Contact 
Probe, which results in a FOV of 3.14 cm2. 
 
First, the direct relation between reflectance values and SOC 
content was investigated. This was performed for each 
wavelength individually, the summed reflectance in the visible 
wavelength range (400-700 nm) and the slope for several ranges 
in the VIS. Following this, the usability of spectral indices 
related to lignin and cellulose absorption for SOC prediction, 
was investigated. For the lignin related absorption, the 
reflectance around 1754 nm was used. For the cellulose related 
absorption, the reflectance around 2100 nm was studied. First, 
the general reflectance pattern was investigated. Next, based on 
the reflectance pattern, spectral indices were developed. The 
first type of index uses the area of the absorption feature, which 
was defined as the sum of the total reflectance minus the 
continuum removed function. This was done for several 
wavelength ranges and widths of the absorption feature. The 
second type of index uses the slope of the spectral signature 
corresponding to the higher wavelength part of the absorption 
feature.  
 
Both linear and curvilinear regression functions were plotted. 
The quality of the fit is assessed using the R2-value with a 
confidence level of 0.95. Furthermore the results were cross-
validated by applying the found relations for Set 1 on Set 2 and 
vice versa. Quality of the SOC content prediction is expressed 
in Standard Error of Calibration (SEC) and Standard Error of 
Performance (SEP). 
 
 

3. RESULTS AND DISCUSSION 

For individual wavelengths, the highest correlations appear in 
the visible part of the spectrum. Due to the large variance in 
SOC content, the relation is not linear. Curvilinear relations are 
more often reported in literature (Baumgardner et al., 1985), 
(Schreier, 1977). The relation can be made practically linear by 
calculating the inverse of the reflectance (1/reflectance), which 
reveals highest correlation between 640 and 690 nm (R2

set 1 = 
0.8).  
 
Figure 2A shows that the relation between the ‘Summed 
Reflectance 400-700 nm’ and SOC, can be considered linear in 
the SOC range from 0 to 5 % and from 5 % and higher. A 
combination of samples with high and low SOC content results 
in a non-linear relation. Again, the relation can be made linear 
by taking ‘1/Summed Reflectance 400-700 nm’, as shown in  
Figure 2B.  
 
Not only is there an overall decrease in reflectance in the visible 
part of the spectrum, but the slope in this spectral region also 
varies with the SOC content (Figure 3). The correlation of SOC 
and the slope in the VIS was tested for several spectral ranges, 
but ‘1/Slope 400 - 600 nm’ appeared to correlate best (R2

set 1 = 
0.93).  
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Figure 2: SOC content plotted against the sum of the reflectance 

in the visible wavelengths (graph A) and the SOC content 
plotted against ‘1/the sum of the reflectance’ in the visible 

wavelengths (graph B). 
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Figure 3: SOC content plotted against ‘1/Slope 400-600 nm’. 

 
The spectral response from 1600 to 1800 nm for three different 
SOC contents is shown in Figure 4. Although the overall 
reflectance varies, there is no difference in reflectance pattern. 
Therefore, it is not possible to derive an index based on this 
spectral region, which in vegetation studies is used as an 
indication for lignin content. A slight variance in slope is 
visible in Figure 4. However, this does not show a relationship 
with SOC content.  
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Figure 4: Spectral signature (1600 – 1800 nm) of three soils 

with different SOC content. This spectral range is influenced by 
the presence of lignin. 

 
Figure 5 shows the spectral response from 2000 to 2200 nm for 
three different SOC contents. Besides the difference in overall 
reflectance, the reflectance pattern also varies. In contrast to 
vegetation, where the presence of cellulose results in a clear 
absorption feature, the presence of cellulose does not lead to an 
absorption dip in this case. Nonetheless, the spectral profile 
flattens when the SOC content increases. This can be 
interpreted as an absorption feature, although the reflectance 
does not show a dip as such.  
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Figure 5: Spectral signature (2000 - 2200 nm) of three soils 

with different SOC content. This spectral region is influenced 
by the presence of cellulose. 

 
The changes of the spectral profile from 2000 to 2200 nm are 
quantified in two ways. First, the total decrease in reflectance, 
compared to the continuum removed values, between 2050 and 
2200 nm, is calculated and related to SOC. This results in a 
value that describes the area of the absorption feature. Since 
there is no actual absorption dip, the area shows a negative 
curvilinear relation with SOC (Figure 6A). More SOC leads to a 
higher amount of cellulose, which results in more absorption 
and a flatter spectral signature. This is shown by a lower value 
for the area. To create a linear relation, the inverse of the area is 
taken (Figure 6B) (R2

set 2 = 0.87). As a second index, the slope 
of the spectral signature is calculated, which yielded the best 
results for ‘1/Slope 2138-2209 nm’ (R2

set 2 = 0.98). This 
corresponds most with protein and nitrogen related absorption 
features in vegetation, as reported by (Curran, 1989). 
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Figure 6: SOC content plotted against the Area from 2050-2200 

nm  (A) and the SOM content plotted against ‘1/Area 2050-
2200 nm’ (B). 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
The R2-values of the correlation functions are described in 
Table 7. Because relations based on direct correlations are 
curvilinear, only the results of inversed relations are shown. 
The largest R2-values are found for ‘1/slope 2138-2209 nm’. 
Nevertheless, this result is somewhat deceptive. Because the 
SOC content of the used samples already showed a skewed 
distribution, a further increase in skewedness is undesired. In 
this case, all samples with a low SOC content concentrate 
around 0, while the single soil sample with the largest SOC 
content shows an extremely large negative value. This results in 
a R2-value of 0.98, but the relation is not usable for the 
prediction of SOC, since it cannot differentiate between smaller 
SOC contents. The cellulose absorption dip based index ‘1/Area 
2050-2200 nm’ and the visible wavelengths based index 
‘1/Slope 400-600 nm’, show the overall highest R2-values, 
combined with a decrease in skewedness.  
 

The SEC and SEP values (Table 7) show a pattern comparable 
to the R2-values. In general SEC and SEP values are highest for 
‘1/Summed Reflectance 400-700 nm’. Mostly, SEP values are 
somewhat higher than SEC values. The cellulose absorption 
feature based indices show a larger SEP value for Set 1. 
Especially Set 1 of ‘1/Slope 2138-2209 nm’ shows a very high 
SEP value, which can be reduced by removing point ‘Ring02’. 
This sample has a SOC content that lies outside the SOC range 
of Set 2. Therefore, calculating the SEP for Set 1 implies an 
extrapolation outside the range of the training set. However it is 
impossible to draw firm conclusions based on a single 
observation, ‘1/Slope 2138-2209 nm’ appears to be very 
sensitive to extrapolation of the found relation beyond the SOC 
range for calibratoin. Other indices do not show this strong 
sensitivity. The results show that the SWIR spectral region can 
be used for the determination of SOC, as was also reported by 
Morra et al. (1991) and Henderson et al. (1992).  
 
 

4. CONCLUSION 

It is possible to use spectral indices to estimate SOC for a 
dataset composed of nine soil types. All investigated indices 
show a curvilinear relationship with SOC, due to the large range 
in SOC content. Indices based on the presence of cellulose yield 
higher R2-values than indices based on the visible part of the 
spectrum, but SEC and SEP values are not necessarily lower. 
Some indices show a significant sensitivity to estimation of the 
SOC content outside the SOC range of the training set. Further 
research will therefore also rely on broader ranges of soil 
samples containing even larger variation of SOC.  
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