
REAL-TIME SAR SIMULATION OF COMPLEX SCENES USING PROGRAMMABLE

GRAPHICS PROCESSING UNITS

Timo Balz

Institute for Photogrammetry (ifp), Universität Stuttgart, Germany

Geschwister-Scholl-Strasse 24D, D-70174 Stuttgart

timo.balz@ifp.uni-stuttgart.de

Commission VII

KEY WORDS: SAR, Radar, Real-Time, Simulation

ABSTRACT

The usability of SAR simulations is often limited by the long processing times of traditional SAR simulators which apply the ray

tracing approach. Ray tracing, which is also used for virtual image generation, is based on accurate physical models, but is unfortu-

nately rather computational time intensive. Because of this, real-time applications, like interactive visualisation, in general use the

rasterization method. Rasterization is less complex to calculate and therefore faster. The ability to simulate even complex SAR

scenes in real-time is a new development in SAR simulation. In this paper we present the real-time SAR simulator SARViz, which

uses rasterization and is implemented on programmable graphics processing units, which are nowadays included in most modern

PCs. SARViz is able to visualise even complex scenes in real-time, using the tremendous development in computer graphics for the

next generation SAR simulator.

1. INTRODUCTION

SAR images are difficult to understand. SAR simulators are key

tools for SAR image understanding (Leberl & Bolter, 2001),

because they can support the interpretation of SAR images.

They are also useful for mission planning, especially in urban or

mountainous areas. Furthermore, SAR simulations can be used

for automatic image interpretation, by comparing SAR simu-

lated images with real SAR images. All of these applications

benefit from fast SAR simulation results.

The interpretation of SAR images by a human operator is an in-

teractive process. In this process, the SAR simulation results

should be provided fast, otherwise the simulation will not be re-

garded as a useful tool. SAR mission planning requires the test-

ing of a variety of flight and sensor parameters to find the opti-

mal ones. For these purposes complex environments, like city

areas, have to be simulated fast, but a limited simulation quality

is acceptable, as long as the results are delivered in real-time.

This is also true for many automated image analysis methods

based on SAR simulation, which are only useful if they can be

computed fast.

To speed up the simulation, SAR simulators can apply the tech-

niques used by computer graphics. Computer games nowadays

offer amazing visualisation effects in real-time. This is possible,

because of innovations in software and hardware design. Mod-

ern graphic cards provide 3D hardware acceleration support and

programmable graphics processing units (GPU). These graphic

cards are sold with almost every PC and provide a boost in

computational power, which is mostly used for games. The

game industry is the driving force behind this development and

thanks to the economy of scale these graphic cards are now

widely available and inexpensive. Beside game development,

the computational power of the GPU can be used for a variety

of general computation purposes (Owens et al, 2005) (Buck,

2005), like for example linear algebra, signal and image proc-

essing, audio processing and data mining.

As an introduction, the SAR principle will be explained briefly

in section 2, followed by a short overview of the techniques

used in computer graphics. In section 4 the real-time SAR simu-

lator SARViz will be described. Example images will be de-

picted and discussed in section 5.

2. SAR PRINCIPLE

SAR systems are using different wavelengths as optical systems.

Beside the radiometric differences, the image geometry is also

different. SAR systems are active remote sensing systems. Due

to their running-time or distance geometry, the position of a

pixel in range direction depends on the distance between the

sensor and the imaged object. The SAR system is emitting a ra-

dar beam and the radiometry of the SAR image is determined by

the backscattered energy. Thus, the SAR image radiometry de-

pends on the sensor as well as the roughness and the dielectric

constant of the reflecting material.

Figure 1. SAR geometry in range

In Figure 1, the SAR geometry is shown schematically in range

direction, which is normally perpendicular to the flying direc-

tion of the sensor. Point A is imaged correctly in A’, whereas

the points B and C are imaged in B’ and C’, closer to near

range, as their real position. This so-called layover-effect is

caused by the running-time geometry of the SAR sensor. The

range between A and E is the shadow area. Because of the dis-

placement of point C in C’ the shadow is starting at point A and

not at point D.

Beside bi-static SAR, the SAR sensor emits and receives the

electromagnetic wave. Only energy which is reflected back can

be received by the sensor. In contrast to passive remote sensing

systems, SAR systems control the electromagnetic energy used

for image generation. The properties of the electromagnetic

wave are well known and can be influenced, whereas this is not

true for passive systems. For the simulation of SAR images, this

is beneficial, because the electromagnetic wave is known and

the behaviour of the wave can therefore be modelled more

exactly. Still the material properties, like for example the dielec-

tric constant, are unknown.

SAR images are different from images in the visible domain of

the light and are therefore unusual for the human operator. SAR

simulations can be a useful tool for SAR image understanding

and interpretation.

3. VISUALISATION TECHNIQUES IN COMPUTER

GRAPHICS AND SAR SIMULATION

Real-time visualisation of real-word or artificial scenes is one of

the main goals in computer graphics. Ray tracing, which is

based on the physical model of light, is usually used for realistic

visualisations. There are many theories about the nature of light.

For our purpose light can be described as energy emitted from

light sources in the form of rays, which can be imagined as

streams of photons. Each ray is travelling through space until it

eventually hits the surface of an object in its way.

In ray tracing the path of each ray of light is followed. Starting

from the light source, each ray is traced until the ray reaches the

virtual camera. Each interaction with respective object surfaces

is simulated. To reduce the amount of rays to trace, the rays can

also be traced backward, thus from the virtual camera to the

light source. The combination of both methods is reasonable

(Heckbert, 1990).

In SAR simulation the sensor position matches the light source

as well as the position of the virtual camera. Therefore, there are

no differences between forward and backward ray tracing in the

SAR case. Interactions with surfaces are simulated based on the

respective material and light properties. Each ray or microwave

beam can be absorbed, refracted or reflected, which enables a

high-degree of realism in the visualised scene, as long as the

material properties are known and the interaction between the

surface and the microwave beam can be modelled accurately.

Ray tracing is not only based on accurate physical models, it is

also easy to implement, but is rather computational time con-

suming. For each pixel in the resulting image at least one ray

has to be traced. Assuming reflections and multiple light

sources, the number of rays to trace is increasing accordingly.

For real-time applications, ray tracing is usually too slow.

A primitive-by-primitive approach is faster as a pixel-by-pixel

approach like ray tracing. Rasterization is a primitive-by-primi-

tive approach. Rasterization is usually used for real-time visu-

alisations and is using triangles as primitives. Therefore, trian-

gulated 3D vector models are used as input data for the simula-

tion. Each triangle is then, according to the visualisation proper-

ties, like the position and orientation of the virtual camera,

transformed from the world to the screen or image coordinate

system. Each triangle is rasterized and depicted at this trans-

formed position.

Triangles which are calculated first can be overwritten by trian-

gles which are rasterized later, even if the pixel which is

rasterized later is occluded in reality. To avoid this, z-buffering

is used (Catmull, 1978). In the z-buffer each depth value of an

already rasterized pixel is saved. Every new pixel which has to

be rasterized, must pass the z-test, thus must be closer to the vir-

tual camera as the pixels already rasterized. The z-buffer should

be a 32-bit texture to achieve a more accurate z-test. 16-bit or

even 8-bit textures can result in artefacts if two objects are too

close together.

Z-buffering is simple and efficient. For rasterization and z-

buffering less computational effort is necessary compared to ray

tracing. Modern graphic cards support rasterization and provide

hardware acceleration. This acceleration enables the real-time

visualisation of even very complex scenes.

However, since the technique is not based on the physical light

transport, it is not able to simulate scenes containing complex

reflections. Still, as it is possible to create realistic scenes for

computer games, it is also possible to simulate realistic SAR

images using rasterization, adopting the methods developed in

computer graphics as it is described and depicted in section 4

and 5.

4. SARVIZ: HARDWARE ACCELERATED SAR-

SIMULATION

3D graphic cards are specially designed for the fast rendering of

3D scenes. The hardware implementation of standard visualisa-

tion routines guarantees highest performance for these special-

ised tasks. The visualisation of SAR scenes is not possible us-

ing standard visualisation methods, due to the different image

geometry. These differences have to be implemented.

Modern graphic cards offer flexible and programmable graphics

processing units (GPU). Using programmable GPUs allows the

implementation of the SAR geometry and therefore real-time

SAR simulation using standard graphic hardware.

Texture Cache

Host

Vertex Processing

Texture- and
Pixel Processing

Rasterization / Culling / Z-Cull

Z-Compare and Blend

Memory Memory Memory Memory

Texture Cache

Host

Vertex Processing

Texture- and
Pixel Processing

Rasterization / Culling / Z-Cull

Z-Compare and Blend

Memory Memory Memory Memory

Figure 2. NVIDIA GeForce series 6 architecture (Kilgariff &

Fernando, 2005)

In Figure 2, the architecture of NVIDIAs GeForce 6 series is

depicted as block diagram. Programming the so-called vertex

and pixel shaders, the visualisation can be customized. The real-

time SAR simulator SARViz, which is described in this paper,

is implemented using Microsoft’s DirectX API (Microsoft,

2005). Starting with DirectX 8, the shaders could be pro-

grammed using assembler.

Since DirectX 9, the high-level shading language (HLSL) was

introduced, which is used by SARViz for GPU programming.

SARViz uses slightly modified DirectX meshes as input source.

These meshes are directly supported by the DirectX API and a

variety of 3D CAD tools can export to this format. The colour

information of the meshes is adapted to meet the needs of SAR

visualisation. Import tools for other data sources, like for exam-

ple ArcGIS datasets, integrates the SARViz simulator to the

GIS-world.

4.1 SAR rasterization

The GPU is a data-parallel streaming processor working in a

single-instruction, multiple data (SIMD) fashion. The GPU al-

lows a massively parallel computing. Each triangle or pixel is

visualised independent from any other triangle or pixel. Each

triangle point is processed by the so-called vertex shader, which

treats the geometry. After the rasterization, the radiometry of

each pixel is calculated by the so-called pixel shader.

Each vertex or triangle point respectively, is processed in the

vertex shader. Vertex shaders are highly specialized parts of a

graphic card and are optimized for matrix calculations. Each

point is transformed from the model coordinate system to world

coordinates and then subsequently to screen or image coordi-

nates.

The geometry of a SAR image differs from the visible light

image geometry. The running-time geometry of a SAR image

needs to be implemented in the vertex shader. In SAR images

the position in range of each object depends on the distance

between the object and the sensor, thus higher points, i.e. points

with larger z-values, are closer to the sensor and are therefore

mapped closer to near-range. This results in a shift in range

direction x∆ depending on the height above the ground level z

and the incidence angleσ :

 tan()x z σ∆ = ⋅

Each triangle processed by the vertex shader is afterwards

rasterized. The resulting pixels are processed by the pixel

shader to compute the corresponding radiometry. Calculating

the reflection intensity for SAR images is a relative complex

task. Since the first programmable pixel shaders were limited to

only a few calculations, complex and customized illuminations

could not be calculated. In contrast, modern pixel shaders (pixel

shader version 3.0 or higher) support branching and more than

512 machine-code commands, which is sufficient even for com-

plex tasks like SAR simulation.

For each pixel the corresponding face normal is known. Taking

material properties, like the dielectric constant, and sensor prop-

erties into account, reflection strengths can be calculated in the

pixel shader.

4.2 Reflection properties

According to the Phong reflection model (Phong, 1975), three

illumination elements (diffuse, specular and ambient) are com-

bined for the resulting reflection. Ambient lightning is negligi-

ble for SAR simulation. The diffuse illumination element is

equivalent to the Lambertian reflection element.

The SARViz simulator is able to handle different reflection

properties for each triangle of the simulated 3D model. Accord-

ing to the roughness of the material surface, the reflection is

either more Lambertian or more specular and the resulting re-

flection is calculated accordingly. Using rasterization the re-

flected radar beams are not traced. Therefore the influence of

specular reflections to surrounding objects is not modelled.

4.3 Data range

SAR images cover a high data range which cannot be repre-

sented by 8-bit images. To cover the complete dynamic range,

32-bit data is adequate. Modern graphic cards support high-

dynamic range lighting with 32-bit floating point accuracy,

which is sufficient for the simulation of SAR images.

To use this ability, the pixel shader first renders to a 32-bit

floating point texture. In the next step this texture is enhanced

for 8-bit display and rendered to the screen, enabling the SAR-

Viz simulator to deliver both 8-bit data for visualisation, but

also 32-bit floating point images for further processing.

4.4 SAR illumination

In the SAR geometry, reflections from different objects or ob-

ject parts which are equidistant to the sensor in range direction

will sum up in the SAR sensor. This effect can also be modelled

by GPU based SAR simulations, e.g. by alpha blending. Alter-

natively already rendered information can be copied back from

the render target, thus the simulated image, and added to the

new calculated reflection value. Both methods have advantages

and disadvantages. Accessing the render target during the ren-

dering is not optimal, because of the heavily parallelized render-

ing process of the graphic card. Two parallel pixel shaders

accessing the same pixel at the same time can overwrite the re-

sults of each other. This could lead to image artefacts or wrong

simulation results. Alpha blending avoids these problems.

Alpha blending is a way of combining two colours in computer

graphics. Alpha blending allows transparency effects, but at the

moment the hardware support for 32-bit floating point textures

is not sufficient. Furthermore, it is disadvantageous, because in

SAR processing the different reflections sum up, which is not as

accurately simulated by alpha blending. Two colours sum up

fine using alpha blending and an alpha value of 0.5, but three or

more equidistant reflections would sum up inconsistently.

4.5 Speckle effect

Speckle is important for the realistic visualisation of SAR

images. Both cases of speckling, i.e. with and without dominant

scatterers, can be simulated in real-time. Because no random

values, beside Perlin noise, can be generated on the GPU, the

random values are generated by the CPU and stored in a texture.

Accessing the random texture, the GPU can calculate speckle

noise for pixels with and without dominant scatterers.

For each triangle in the model the value for the dominant scat-

terer can be set, whereas a value of zero represents a speckling

without any dominant scatterer. The integration of different

speckle behaviours allows the realistic simulation of different

material behaviours related to scattering. This is very important

for a realistic SAR simulation.

4.6 SAR shadow

In the rasterization approach, the paths of the rays are not traced

and every vertex and pixel is processed separately, therefore

occlusions are not modelled. By using shadow maps (Williams,

1978) both shadows and occluded areas can be modelled.

A shadow map is generated in two steps. First, the scene is ren-

dered from the position of the light source, which is in SAR

simulation equivalent to the SAR sensor position. Instead of re-

flection values, the distance of every rendered pixel to the sen-

sor is copied to the so-called shadow map, as it is depicted in

Figure 3.

Nadir view without shadow Sensor view

Shadow map Nadir view with shadow

Figure 3. SAR shadow map generation

In the second step the scene is rendered from the position of the

virtual camera. SARViz directly simulates ground-range images

to avoid the computational intense transformation from slant-

range to ground-range. Because of this, the scene is rendered

looking from nadir direction. The distance of each pixel ren-

dered in the nadir view is compared to the distance from the

sensor position. For this purpose, the values stored in the

shadow map are transformed to nadir. If the distance of a pixel

to the sensor is longer as the value stored in the shadow map,

the pixel is not visible and therefore it will not be rendered.

Shadow maps are fast and provide real-time shadows. They

have problems if the virtual camera is inside a shadow area, or

in other problematic constellation between virtual camera and

light source. For SAR simulation, the sensor is identical to the

light source and the virtual camera, therefore no such problems

exist. Still, some precision and aliasing problems may occur

while using shadow maps.

4.7 Simulation of irradiation stars

Strong reflecting objects like corner reflectors can cause typical

blooming effects in SAR images. The blooming is caused by the

high amount of energy reflected to the sensor.

Analysing the simulation result, which is first rendered to a 32-

bit floating point texture, high-reflecting points can be found.

Depending on a threshold, these high-reflecting points are con-

sidered to cast irradiation stars, as depicted in Figure 4. After-

wards these stars are rendered to the simulation result.

(a) (b)

Figure 4. SARViz high-resolution simulation of a truck, with

(a) and without (b) the star effect

4.8 Environment maps for double-bounce simulation

Environment maps are used in computer graphics to visualise

reflecting surfaces, which nowadays is directly supported by the

graphic hardware. For environmental mapping, which is also

sometimes referred as cube mapping, a cube texture is created

around the reflecting object. The cube contains the scene

around the object for the visualisation of the reflections. For

this purpose, the scene is rendered six times without the reflect-

ing object, but from the position of the object and looking to

different directions. The six sides of the cubes are filled with

textures containing the results from this rendering step.

Figure 5. Environment mapping

Based on the environment stored in the cube texture, reflections

from the surrounding area can be visualised. In the final render-

ing step, the cube texture lookup position of a specified pixel is

determined by the position of the virtual camera and the normal

direction of the object surface, as depicted in Figure 5. No com-

plex multi-bounce reflections are visualised in this way, but re-

flections can be visualised in real-time.

For SAR simulation, this technique is also applicable, but only

double-bounce reflections can be visualised that way. Even

worse, only double-bounce reflections between different objects

can be visualised. Intra-object reflections are not visualised. A

reflection map for every triangle would be a possible way to

overcome that problem. But a scene containing thousands of

triangles would end up in thousands of rendering steps, which is

far too much for real-time applications.

Double-bounce reflections from the ground, for example caused

by asphalt surfaces, can be simulated using this technique. For

this purpose, not even a real cube has to be simulated, because

just one cube side is needed for the environment map, since

only the asphalt surface is assumed to reflect.

To render the reflection texture, the scene is rendered with a

virtual sensor position regarding the reflecting angle. The image

geometry of the double-bounce texture differs from the single-

bounce geometry and the different image geometry has to be

implemented.

In the final step, the scene is rendered from the sensor position.

The double-bounce reflection information is, regarding possible

occlusions and shadows, added to the single-bounce reflection.

Depending on the roughness of the ground, the intensity of the

double-bounce reflection is adapted accordingly.

5. EXAMPLES

As described above, using rasterization for real-time SAR simu-

lation is feasible and delivers promising results, which will be

discussed in this section.

Figure 6: High-resolution SAR simulation of the "Stiftskriche"

in Stuttgart (0.3m resolution)

In Figure 6, a simulated SAR image of the “Stiftskirche” in

Stuttgart can be seen. The model is the same which has been

used for Figure 3. The displacement of the spires due to the

SAR image geometry is clearly visible. Simple building models

are simulated in about 10 milliseconds. Single buildings are sel-

dom of interest, whereas the simulation of complete urban areas

is important for many applications.

Figure 7. SARViz simulation of the 3D city model of Stuttgart

(5m pixel resolution)

Simulations of complex urban environments are depicted in

Figure 7 and Figure 8. The city model, simulated in Figure 7

and Figure 8, includes 9950 buildings containing 548,729 trian-

gles and can be simulated in about 100 milliseconds using a

NVIDIA GeForce 6600 graphic card. This time does not in-

clude the time needed to copy the data to the video memory.

The simulation is not simplifying the models, i.e. all vertices are

rendered. The use of simplified models could allow even higher

frame rates during the low-resolution simulation of complex

models.

Figure 8. SARViz simulation of area surrounding the

“Marktplatz” in Stuttgart (1m pixel resolution)

In Figure 8, a subset of the model is simulated with 1m pixel

resolution. SARViz is able to simulate and visualise complex

urban areas in different resolutions. All buildings are assumed

to have Lambertian reflection and to have the same material

properties.

Different material properties influence the SAR simulation re-

sults. In Figure 9, a Boeing 747-400 model is simulated two

times. One time the model is supposed to have Lambertian re-

flection (a), for the next simulation the model is more specular

(b).

(a) (b)

Figure 9. SAR simulation of a Boeing 747-400 model with

more Lambertian (a) and more specular (b)

reflection properties

The model in Figure 9 (b) is not totally specular, otherwise the

wings would not be visible at all, because they would reflect the

whole energy away from the sensor. The reflection on the edges

is stronger in the specular model. The speckling properties also

differ between the two simulations. The Lambertian model is

supposed to speckle without a dominant scatterer, whereas the

metallic model is simulated with a strong dominant scatterer.

Objects also get influenced by surrounding objects. Object parts

can get occluded, shadows and reflection may mix. In Figure

10, a high-resolution SAR simulation of such a scene is de-

picted. The same scene is also depicted in Figure 11 as visible

light scene seen from nadir and from the sensor position.

Figure 10. High-resolution SAR simulation of two trucks

covered by trees

Figure 11. Nadir-view (left) and sensor-view (right) of the scene

simulated in Figure 10

As can be seen in Figure 10, the complex interaction of the

simulated objects is often not comparable to our everyday visi-

ble light experience. SAR systems “see” the world different and

a SAR simulator helps understanding the world as it is “seen”

by SAR. Using a real-time SAR simulation, the user is able to

simulate a variety of different scenes and sensor properties with

a few clicks. The real-time capability is important for the usabil-

ity of SAR simulations for training purposes.

Real-time SAR simulation provides feasible results. Real-time

applications like SAR mission planning or object detection

based on real-time SAR simulation are possible.

6. CONCLUSION

In our opinion hardware accelerated SAR simulation using tech-

niques originally developed for computer games is a promising

technology. The simulation results are convincing and the real-

time simulation capability is amazing. Applications based on

SAR simulation profit from the tremendous increase in simula-

tion speed, due to the rasterization technique and the hardware

acceleration. In addition to consumer type graphic cards, no ex-

pensive hardware is required, i.e. real-time visualisation of SAR

images is possible on standard PC hardware.

On the other hand the simulation results are not based on as

exact physical models as used by ray tracing simulators. Espe-

cially the missing multi-bounce effect is a drawback. Double-

bounce effects are realisable using environmental mapping, but

these effects are still not comparable to the results from ray

tracing simulations. Multi-bounce effects are not realisable and

require ray tracing.

If multi-bounce effects are essential, ray tracing on the GPU as

proposed by (Purcell et al, 2002) could be an alternative, as

well as hardware accelerated ray tracing proposed by

(Schmittler et al, 2002).

However, for many applications fast results and the ability to

simulate extensive models including hundreds of thousands of

triangles, are more desirable than the exact physical modelling

of multi-bouncing. For these applications the next generation

SAR simulator SARViz provides high quality results in real-

time.

REFERENCE

Buck, I., 2005. Taking the Plunge into GPU Computing. In:

Pharr, M.: GPU Gems 2. Programming High-Performance

Graphics and General-Purpose Computation. Boston, pp. 509-

519

Catmull, E., 1978. A hidden-surface algorithm with anti-

aliasing. In: ACM SIGGRAPH Computer Graphics,

Proceedings of the 5th annual conference on Computer

graphics and interactive techniques SIGGRAPH '78, Atlanta,

Georgia

Heckbert, P.S., 1990. Adaptive Radiosity Textures for Bi-

directional Ray Tracing. In: Computer Graphics, 24 (4), pp.

145-154

Kilgariff, E.,Fernando, R., 2005. The GeForce 6 Series GPU

Architecture. In: Pharr, M.: GPU Gems 2. Programming

Techniques for High-Performance Graphics and General-

Purpose Computation. Boston, pp. 471-491

Leberl, F.W.,Bolter, R., 2001. Building reconstruction from

Synthetic Aperture Radar images and interferometry. In:

Baltsavias, E.P., Grün, A., Gool, L.v.: Automatic Extraction of

Man-Made Objects From Aerial and Space Images (III). Lisse,

pp. 281-290

Microsoft, 2005. DirectX 9.0c Software Development Kit.

http://msdn.microsoft.com/directx

Owens, J.D., Luebke, D., Govindaraju, N., Harris, M., Krüger,

J., Lefohn, A.E., Purcell, T.J., 2005. A Survey of General-

Purpose Computation on Graphics Hardware. In: Eurographics

2005, State of the Art Reports, Dublin

Phong, B.T., 1975. Illumination for computer generated

pictures. In: Communications of the ACM, 18 (6), pp. 311-317

Purcell, T.J., Buck, I., Mark, W.R., Hanrahan, P., 2002. Ray

tracing on programmable graphics hardware. In: Proceedings of

the 29th annual conference on Computer graphics and

interactive techniques, San Antonio, Texas

Schmittler, J., Wald, I., Slusallek, P., 2002. SaarCOR - A Hard-

ware Architecture for Ray Tracing. In: Ertl, T., Heidrich, W.,

Doggett, M.: Graphics Hardware. Saarbrücken, Germany

Williams, L., 1978. Casting curved shadows on curved surfaces.

In: ACM SIGGRAPH Computer Graphics, Proceedings of the

5th annual conference on Computer graphics and interactive

techniques SIGGRAPH '78, Atlanta, Georgia

