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ABSTRACT:

Image classification can benefit from incorporating texture by enabling an increased number of classes and improving thematic accu-
racy. Incorporating texture also involves special attention in a number of aspects that range from the texture source to the evaluation of
accuracy through pre-processing, training strategy and choosing a texture extraction paradigm and a classifier. Without special care in
these aspects, classification results can be very unpredictable, especially when mixing spectral and textural features in the classification.
This is mainly due to the spatial dependency of texture features.
The present article aims at analyzing these aspects (six in all) through a review of the concepts involved and a demonstration with two
sample image data sets in a complex semiarid environment in Brazil. The data sets were formed with texture features from a SPOT-5
panchromatic image and spectral features from LANDSAT 7 ETM+ data. Results suggest that useful texture features can be extracted
from SPOT-5 panchromatic data and that a mixed classification scheme is generally better than either approaches (spectral or textural).
They also suggest that a non parametric classifier (Fisher linear discriminant) performs better for sets incorporating spectral and textural
features and is less affected by edges and borders.

RÉSUMÉ:

La classification d’image peut béńeficier de l’ajout de textures qui permet d’augmenter le nombre de classes et la précision th́ematique.
L’incorporation de la texture implique une attention spécialeà un nombre d’aspects qui vont du choix de la source des texturesà
l’ évaluation des ŕesultats en passant par le pré-traitement, la stratégie d’entrâınement ainsi que le choix d’un paradigme d’extraction de
texture et d’un classificateur. Sans se soucier de ces aspects, les résultats de la classification peuventêtre impŕevisibles, surtout si la
classification incorpore un ḿelange d’́eléments spectraux et de texture, cette dernièreétant un processus̀a d́ependance spatiale.
Le pŕesent article vise l’analyse de ces aspects (six en tout)à travers une revue des concepts impliqués et une demonstrationà l’aide
de deuxéchantillons d’image provenant d’un environnement semi-aride du Brésil. Les donńees sont forḿees d’́eléments de texture
extraits d’une image panchromatique SPOT-5 et de bandes spectrales d’une image LANDSAT 7 ETM+. Les résultats sugg̀erent que les
textures extraites d’image SPOT-5 peuventêtre utili à la classification mixte (spectrale et de texture) qui s’est avéŕee meilleure que les
approches individuelles. Ils suggèrentégalement que le classificateur non paramétrique (“Fisher linear discriminant”) s’avère meilleur
pour la classification de données mixtes (spectrales et de texture) et est moins affecté par les ar̂etes et bordures.

1. INTRODUCTION

The concept of texture analysis in remote sensing is still only
marginally used in the classification process and a robust method
for incorporating it remains elusive (Ferro and Warner, 2002).
Most papers using texture in a classification process show that
its use can bring significant improvement to the results and many
off-the-shelf remote sensing software offer some kind of texture
extraction method. So why not use it more? One reason might
well be the difficulties encountered in choosing the settings and
measurement types. Another reason may lie in the fact that clas-
sification can be a very sensitive process and the incorporation
of features from spatially dependant processes can bring a strong
bias to the results. One of the most popular classifiers assumes
variables to have a normal distribution; texture features usually
do not. Even field work should take into account that texture will
be used and avoid proximity to edges and linear features.

The objective of the present paper is to assess the different
aspects of including texture analysis into a classification process
and to demonstrate the procedure using medium-high resolution
data. These aspects are represented by six sequential steps. Two
small complex scenes are used to test the mixed (spectral and tex-

tural) classification process and demonstrate the process. Results
obtained with two sub-images are presented and discussed in a
separate section. Concluding remarks make up the last section.

2. BACKGROUND

Texture in remote sensing has generated an extensive body of lit-
erature for which a review is beyond the scope of this paper. Of
the many approaches that this wealth of studies has proposed, the
GLCM appears to be the most commonly used (Franklin, 2001)
and has proven amongst the most powerful methods for many sit-
uations of texture classification (Clausi, 2000; Maillard, 2003).

The GLCM was first used by Julesz (1962) and proposed by
Haralick et al. (1973) as an approach to extracting textural fea-
tures for image classification purposes. The method is based on
the assumption that grey tones are spatially dependant (condi-
tional joint probabilities) and that their dependency can be ex-
pressed through a co-occurrence matrix. Haralick et al. have
therefore proposed a series of measurements taken from such ma-
trices that relate to various aspects of texture (i.e. homogeneity,
contrast, entropy, etc.). Only one pixel pair distance is usually
used to construct the co-occurrence matrix. There appears not to
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be any known rigorous way to determine this sampling distance
(Clausi, 2000) but an analysis of the semi-variogram (Maillard,
2003) or the local variance (Cao and Lam, 1997) can help to iden-
tify the distance with greater texture contrast.

In most classification projects the distribution of spectral
measurements is considered Gaussian. Texture features have dis-
tributions that can not always be considered Gaussian and so clas-
sification schemes that use mixtures of spectral and textural fea-
tures can produce unpredictable results. For that reason it can be
wise to use a non-parametric classifier such as the Fisher linear
discriminant (Duda and Hart, 2000).

3. METHOD

The methodology proposed has been divided into six successive
steps that roughly correspond to the normal steps taken when
classical spectral-only classification is performed. Each one of
these steps requires special attention and successful texture clas-
sification is highly dependant upon how cautiously the analyst
follows these special points of care.

The image data used in this article come from an ongoing
research project for mapping semiarid vegetation forms in the
Peruaçu region, North of Minas Gerais - Brazil.

3.1. Step 1: determining source of texture

Unless the objects being sought are fractal in nature, texture is
a highly scale-dependant process (Cao and Lam, 1997). Objects
that are distinct at a resolution of one meter (e.g. houses in a res-
idential area) might become a coarse texture at a resolution of 30
meters or even a smooth texture with a 100 meter pixel size.

Although texture extracted from classical multi-spectral data
(e.g. Landsat, Aster, Spot-Mx) has shown to bring some improve-
ment to classification results in a variety of contexts (Franklin,
2001; Ferro and Warner, 2002), it is the perspective of using or
integrating high-resolution data (ten meters or less) that gives tex-
ture its full potential. It can be perceived as a way to exploit high
within-class variations as a favorable asset instead of a recurring
problem when using per-pixel classification algorithms on high
resolution data.

The Peruaçu project was initially planned with Landsat
ETM+ data which are used here as the multispectral component.
Given the size of the study area and our scale requirements (1:25
000) we chose Spot-5 five meter panchromatic data to be the
most suited. Other data sources qualify at least as well as pos-
sible sources of good visual texture (e.g. IRS-P6, Ikonos, Quick-
bird) depending on the type of texture sought (i.e. H-resolution
vs L-resolution). A half image (40 km x 40 km) was acquired
from the Spot Image Corporation that had less than a year in
time difference with the Landsat data. The image dataset used
here is made up of five texture features derived from the Spot
image (contrast, angular second moment, entropy, inverse differ-
ence moment and correlation) and six spectral features from the
Landsat image (bands 1 to 5 and 7).

3.2. Step 2: pre-processing channel for texture

While classical multispectral classification usually exploits dif-
ferences in first-order probability densities in a multi-dimensional
space, texture is usually associated with second- and higher-order
probability densities. These probability densities being spatially-
dependent, pre-processing usually involves some kind of filtering
either in the spatial (convolution) or spectral (Fourrier) domain.

The pre-processing used here consisted in transforming the im-
age function into an independent identically distributed process,
a transformation similar to eliminating low frequencies.

Since texture features are computed from a co-occurrence
matrix that is in turn computed over an image ”window” of a cer-
tain size (typically equal or larger than5 × 5), borders between
regions of homogeneous texture will tend to appear blurred or to
have a texture of their own. This will be aggravated if the two re-
gions have significantly different expectations. This undesirable
effect can be reduced by making sure the local mean is constant
throughout the image. This was performed by first applying a
low-pass filter (31 × 31 neighborhood averaging) and then sub-
tracting the results to the original image. It is important to use
a rather large kernel window in order to leave a wide range of
frequencies unaltered. Figure 1 illustrates this operation and Fig-
ure 2 shows the effect of eliminating low frequencies from some
computed texture features. One can clearly see that the texture
features computed from the unfiltered image have a much more
“busy” appearance than the filtered image on which regions are
more homogeneous.

3.3. Step 3: texture processing

Regardless of the texture feature extraction method chosen
(GLCM in this case) one has to decide if these features should
preserve or not the anisotropy of the textures observed in the im-
age. While anisotropic texture features have shown to yield better
classification results (Franklin, 2001; Maillard, 2003) they also
involve a larger data set (to account for the various directions)
and the separate classification of similar textures having differ-
ent orientation. An alternative approach that still integrates some
anisotropy consists in first computing the mean value for all di-
rections considered and then calculating a measure of variation
(i.e. standard deviation, variance, maximum difference, etc.). In
the present case, only the mean value for four orientations (0, 45,
90 and135◦) was used since most textures present are somewhat
ill-defined and have little or no preferential orientation.

Four parameters have to be set for the GLCM method: 1)
the pixel pair sampling distance, 2) the window size to analyze,
3) the number of quantization levels and 4) the number and type
of measurements. The sampling distance can be set by trial and
error or by computing the local variance (Cao and Lam, 1997;
Maillard, 2003) or the semi-variogram (Franklin, 2001; Maillard,
2003). The semi-variograms of the two sub-images are shown in
figure 3. It appears quite clear that a lag of two represents a sig-
nificant break in the curves and justify our choice of a pixel pair
sampling distance of two pixels. The window size is also very
important and since here we are using a dual-resolution data set
(Landsat with 30 m and Spot with 5m), the window size was cho-
sen based on multiples of the worse resolution (30 m). Window
sizes of18× 18 (3× [30m/5m]) and30× 30 (5× [30m/5m])
have been tested and texture measures appeared to be more stable
with the latter. Texture feature extracted from larger resolution
cells should use smaller windows;5× 5 or 7× 7 for Landsat 30
m cell for instance.

The number of quantization levels was set to 16 as it was
observed that more levels (32 or 64) tend to lower the measure-
ments taken and reduce the between-class distance. The last con-
sideration is the number and type of measurements taken from
the co-occurrence matrices. Here, five different measurements
were considered: 1) contrast (also known as inertia), 2) angular
second moment, 3) entropy, 4) inverse difference moment and
5) correlation. These were selected from previous work by the
author (Maillard, 2003) and by “general popularity” in the liter-
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(a) (b) (c)

Figure 1:Process of eliminating low frequencies through low-pass filtering and image algebra. (a) original image, (b) image resulting
from a low-pass convolution filter (31x31) and (c) result of subtracting the filtered image from the original one.

(a) (b) (c) (d)

Figure 2:Illustration of the effect of eliminating low frequencies prior to extracting texture features (bottom line) compared to main-
taining them (top line): a) inverse difference moment, b) angular second moment, c) entropy, d) correlation.

ature (Haralick et al., 1973; Conners and Harlow, 1980; Clausi,
2000). Some examples of the texture features derived from these
measurements can be seen in Figure 2 (bottom line).

3.4. Step 4: training strategy

The training strategy have already been pinpointed as crucial el-
ements of any supervised classification process (see Congalton
(1988) for a review). An effort has been made to respect these
guidelines. Other considerations have also been taken to account
for the particular situation of using texture features and a dual
resolution set.

The fact that texture is measured over a window of consid-
erable size makes these measurements particularly sensitive to
edges and borders so that these should be avoided as training
sites. Some region’s edges can be used as test sites (see step 6) to
give them some representation. However, during field work, care
should be taken not to choose training sites too close to object
boundaries or linear elements (roads) as is often the case when
access is difficult.

For each class a total of nine bundles of 324 pixels (18× 18)
that correspond to an area of8100m2 which in turn correspond of
a bundle of nine Landsat ETM pixels (3× 3) were sampled from
the scene. To avoid strong autocorrelation, only one in every six

pixels and lines was actually sampled in order to match the Land-
sat resolution. This selection process yielded nine sample pixels
for every bundle. These sites were selected based on a series of
fieldwork episodes conducted between October 2001 and August
2003. Three of these bundles were used as training while the
remaining six were reserved for testing purposes.

Classes can be quite different when texture is considered and
special attention should be given to classes that can span over
more than one texture. This may be the case for crops and their
arrangement of furrows or even orchards that may have a differ-
ent tree arrangement. It was necessary for instance to create a
separate crop class to account for circular furrows (center-pivot).
The same goes for pasture fields that have been separated accord-
ing to the presence of trees and the presence of bare soil patches.
The legend of Figure 4 lists all the classes considered for the two
images.

3.5. Step 5: classification

One of the most common classifiers in remote sensing applica-
tions are the Mahalanobis distance classifier (MD) and the maxi-
mum likelihood (ML) parametric classifier based on Bayes’ rule.
Although these classifiers have already given good results with
texture features some of their assumptions usually have to be re-
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Figure 3:Isotropic semi-variograms of the two Spot-5 sub-images in Figure 4.
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laxed, particularly the assumption of normality. The MD and ML
classifiers can be sensitive to large feature space such as when
spectral and textural features are used. Typically, the absolute
probabilities generated with the MD classifier in the present case
were below1e−10 (usually about 75% of the image). The Fisher
linear discriminant (FLD) classifier being non-parametric is com-
paratively less sensitive to large feature spaces (Clausi, 2000).
The FLD classifier uses the training data to construct a linear
function that combines all the features (a one-dimension feature
space) to maximize the variance between classes and minimize
the variance within class (Duda and Hart, 2000).

3.6. Step 6: evaluating classification accuracy

Any map produced from indirect means such as remote sensing
should be tested for accuracy. This is normally performed using
ground truth samples independent from those used as training.
Acceptable sampling schemes can be simple random, stratified
random, systematic or stratified systematic unaligned sampling;
they can use single or small clusters of pixels (Congalton, 1988).
Clusters are used mainly in order to limit the costs of acquiring
ground truth data or to account for positioning errors. Ideally
these samples should be checked on the field but, for practical
reasons, many studies choose to rely on indirect methods such as
maps or photointerpretation. In the present case, field checking
test samples was not possible for a number of reasons (e.g. dis-
tance, inaccessible terrain) so that our first approach was to split
our initial field samples in two sets and to reserve one set for test-
ing purposes. This however would produce an optimistically bi-
ased accuracy estimate since only relatively large homogeneous
and unambiguous areas were chosen (Steele et al., 2003). Still
these samples can be used in a comparison approach between
classifiers. In order to give a more reliable estimate of accuracy,
a simple random sampling scheme was used to select a total 100
clusters. These clusters were interpreted and the results of the
interpretation was used to evaluate map accuracy. The McNemar
test was used for comparing the results since the same samples
were used for all classification tests and were not therefore inde-
pendent as would require a Kappa difference test (Foody, 2004).
The McNemar test computes a z statistic from a two by two ma-
trix based on correctly and incorrectly classified pixels in both
classifications as follows:

Z =
f12− f21√
f12− f21

(1)

wheref12 represent the pixels that are correctly classified in the
first classification and incorrectly classified in the second classifi-
cation andf21 represents the opposite situation.Z values of 1.96
and 2.58 were considered for the 95 and 99% levels of confidence
respectively.

4. RESULTS OBTAINED WITH TWO SAMPLE
IMAGES

4.1. Overall results

Results obtained with the two image samples shown in Figure 4
(only the Spot panchromatic band is shown) are presented in both
tabular (Table 1 through 3) and graphical form (Figure 4). For all
two image samples, both the MD and FLD classifiers have been
tested and are compared in the discussion. Since prior probabili-
ties were unknown, the ML classifier has been omitted from the
present work. Finally the effect of pre-processing the panchro-
matic channel prior to texture feature extraction is shown at the
end of this section (Table 3).

Table 1A shows the tabular results based on the arbitrarily
selectedin situ samples with the two image samples for both the
MD and FLD classifiers. Table 1B shows the same classification
results but based this time on a simple random sampling scheme
in which most sites were interpreted and not directly visited. The
two tables are divided into three categories according to the type
of features used (spectral, textural or mixed). The first difference
that appears is the relatively large difference between both sets of
results. While the results of the first table are probably optimisti-
cally biased from choosing homogeneous and unambiguous sites,
the second is pessimistically biased by adding interpretation er-
rors to the classification errors. More realistic values are bound
to stand somewhere in between but could not be calculated at this
point. Apart from the performance level being much lower for
the random samples, the two sets of results are consistent with
one another and tend to reveal the same trends as to the most ef-
fective classifier and classification scheme (spectral, textural or
mixed).

In nine out of twelve classifications (using both classifiers)
the mixed classifications (spectral and textural) represent an im-
provement to both spectral only and textural only classifications.
In all significantly different results (ten in all) the FLD classi-
fier proved superior. Results from the MD classifier were slightly
better in four cases but the difference could not be considered
significant (H0 rejected at the 95% confidence level). The graph-
ical results for the mixed classification (Figure 4) show that the
FLD classifier is not nearly as much affected by edges and bor-
ders as the MD classifier. This can partly be explained by the fact
that the MD classifier makes assumptions about the normality of
the distribution of the data and therefore can sometime expand
a class probability far beyond what can be observed in the data.
Edges and borders will typically have marginal values that will be
“absorbed” by classes having high covariance values. The FLD
classifier does not make assumption about the normality of the
data features and is therefore less sensitive to these situations.

4.2. Individual per image results

Only the results of the mixed classification using the FLD classi-
fier are presented in this section since this combination has proven
to yield better results in the present research.

The first image comes from a complex blend of urban, rural
and natural environments having very different textures. For most
classes, user’s and producer’s accuracy scores (Table 2, top part)
are fairly high for both sampling schemes except for the three
classes of pasture which were eventually merged to increase the
overall success rate. The classified image (top of Figure 4) pro-
duced with the FLD classifier is much more consistent and tran-
sition between classes is “cleaner” than with the MD classifier
which tends to “insert” a thin band between objects. This ob-
servations tend to make the FLD classifier generally superior for
dealing with textural and mixed classifications.

The second image sample is located in a complex karstic
landscape where the rugged relief is responsible for much of
the apparent textures. Riparian forest is constrained to two nar-
row canyons dominated by shadow. Spectrally, the differences
between vegetation types are subtle. The classification results
for this image (Table 2, bottom part) show that the best results
were obtained with the FLD classifier and the mixed classification
scheme. In this case however, the spectral classification scored
much better than the textural one, perhaps because of the greater
similarity between textures of natural vegetation. As in the first
image sample, the graphical results of the mixed classification
tend to prove the FLD superior for dealing with edges.
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A. Arbitrarily selected in situ samples B. Random samples (interpreted)
Image 1 Image 2 Image 1 Image 2

Feature κ̂1 κ̂2 |Z| sig. κ̂1 κ̂2 |Z| sig. κ̂1 κ̂2 z sig. κ̂1 κ̂2 z sig.
set MD FLD MD FLD MD FLD MD FLD

Spectral 72.42 76.75 2.68 yes 75.45 75.49 0.0 no 46.44 52.18 6.19 Yes 57.02 56.20 1.20 no
Textural 74.43 83.23 5.03 yes 60.27 64.34 1.87 no 43.48 53.45 8.59 Yes 43.27 46.08 1.86 no
Mixed 88.04 87.21 0.65 no 79.07 84.95 3.99 yes 54.52 68.07 10.80 yes 56.91 65.44 7.72 yes

Table 1:Comparison of overall results obtained for the MD and FLD classifiers with spectral, textural and mixed classifications for
the two images using two different sampling schemes. Z statistics are based on the McNemar test for related samples.

IMAGE SAMPLE 1
Accuracy based on arbitrary Accuracy based on random

samples (field data) samples (interpreted data)
Kappa statistics Kappa statistics

All classes: 87.21% All classes: 68.07%
Merging pasture types: 92.15% Merging pasture types: 84.13%

Class Sample Producer’s User’s Sample Producer’s User’s
size accuracy accuracy size accuracy accuracy

Urban/commercial 54 98.15 82.81 90 93.33 60.87
Urban/residential 54 83.33 88.24 88 75.00 71.74

Dry sclerophy. forest (deg.) 54 100.00 90.00 280 82.50 87.83
Dry sclerophy. forest (pre.) 54 90.74 98.00 79 93.67 74.00

Semi-deciduous forest 54 96.30 92.86 104 84.62 87.13
Pasture (w. trees) 54 70.37 69.09 237 26.58 41.45
Pasture (no trees) 54 100.00 80.60 233 66.52 69.20
Pasture (bare soil) 54 68.52 71.15 327 66.67 57.37
Crops (w. furrows) 54 100.00 100.00 81 100.00 87.10

Central-pivot 54 68.52 100.00 70 74.29 89.66
Sand bars/bare soil 54 81.48 91.67 95 76.84 85.88

Water 54 100.00 100.00 84 97.62 100.00

IMAGE SAMPLE 2
All classes: 84.95% All classes: 65.44%

Dry sclerophylous forest 108 100.00 90.76 586 90.44 72.11
Dense savanna 45 88.89 85.11 147 48.30 86.59
Scarce savanna 54 100.00 78.26 106 79.25 60.43

Regenerating savanna 54 55.56 96.77 63 58.73 51.39
Transition forest 63 65.08 68.33 135 40.74 50.00
Riparian forest 34 94.12 96.97 86 59.30 96.23

Rock outcrops (limestone) 54 100.00 100.00 99 98.99 100.00
Pasture (with trees) 54 90.74 87.50 105 71.43 60.00
Pasture (no trees) 54 68.52 100.00 126 49.21 100.00

Bare soil 31 93.55 52.73 52 88.46 45.54
Eroded/degraded land 54 83.33 93.75 144 38.19 77.46

Populated area 54 92.59 100.00 78 93.59 92.41

Table 2:Overall and class specific estimates of accuracy for Image 1 (top) and 2 (bottom).

4.3. The effect of eliminating low spatial frequencies

In an effort to measure the effect of pre-processing the images
prior to extracting texture, classifications have been performed on
data with and without low frequencies using both classifiers (MD
and FLD). Table 6 shows the mixed classification results obtained
with the raw data compared to pre-processing the panchromatic
channel by eliminating low frequencies prior to texture feature
extraction. The McNemar comparison test was used to compare
the results that suggest that for both the MD and FLD classifiers,
improvement can be achieved by eliminating low frequencies but
that in half of the cases, this improvement is not significant. One
can note however that in the case of the first image sample, the
increase in precision is fairly important and that this image has
the most predominant texture component. Further testing will be
needed to quantify more thoroughly the effect of pre-processing
images prior to extracting texture.

5. SUMMARY AND CONCLUSIONS

Six levels of consideration were presented in order to success-
fully incorporate texture in digital image classification. They are:
1) source of texture, 2) pre-processing channel for texture, 3) tex-
ture processing, 4) training strategy, 5) classification and 6) eval-
uating accuracy. Although the Grey-Level Co-occurrence Matrix
approach to texture analysis was used in this paper, these con-

siderations should be mostly independent of the texture approach
used. The proposed methodology can be used as an effective way
to merge higher resolution panchromatic data (Spot-5, five me-
ter data here) with medium scale multispectral data (Landsat-7
TM here) to increase classification accuracy and/or the number
of classes considered. The results are presented for spectral-only,
textural-only and mixed classification schemes; the latter being
superior in most cases depending on the classifier used and the
relative importance of texture in the classes considered. The fol-
lowing conclusions can be outlined:

• In the context of merged Landsat ETM and Spot-5 data,
mixed classifications generally brought improvement to
either spectral or textural classification alone.

• The relative importance of each aspect (spectral and tex-
tural) varies according to the context of the scene.

• Eliminating low frequencies makes the texture features
more stable and generally improves classification results.

• Training should avoid proximity to object boundaries es-
pecially if differences in texture can be observed.

• Because the Fisher Linear Discriminant classifier is non-
parametric, it appears to respond much better to texture
features and texture boundaries than the Mahalanobis Dis-
tance classifier.
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Kappa statistics (̂κ)
Image sample 1 Image sample 2

Classifier MD FLD MD FLD
Raw texture channel 44.91 60.02 56.33 63.88
Pre-processed texture channel 54.5268.07 56.91 65.44
|Z| (McNemar) 8.81 6.92 0.18 1.56
Significant ? (99%) yes yes no no

Table 3: Compared results between mixed classifications from pre-processed and raw texture channel using the random sampling
scheme.

Figure 4:Classification results for the two image samples and the two classifiers tested (MD on the left and FLD on the right). Top
line: image sample 1; middle line: image sample 2; bottom line: image sample 3.

The present article is intended as an effective way to incor-
porate texture in classification schemes for mapping purposes. It
shows how to incorporate higher resolution panchromatic data
with lower resolution multispectral data in a way that differs from
normal fusion: through texture analysis.
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