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ABSTRACT: 
 
In a recent studie (Greiwe and Ehlers, 2005), the author developed a decision based data fusion approach for the analysis of spatial 
and spectral high resolution image data of an urban scene. Image segments of high resolution orthophotos were classified with 
additional material information derived from hyperspectral image data. To retrieve this material information, the hyperspectral 
image data were classified by the Spectral Angle Mapper (SAM). Results of SAM were included into the classification of the high 
resolution orthophotos. The inclusion of hyperspectral image data significantly increased the classification accuracy of a high 
resolution orthophoto.  
 
One of the steps of the data fusion approach described above that more often requires the user input , is the SAM classification of 
hyperspectral data. One of the preconditions for the analysis of hyperspectral image data is the definition of a set of material 
reference spectra – often called image endmember. A manual selection of image pixel as a definition of image endmember leads to 
user dependent results. To avoid this, many approaches for unsupervised image endmember definitions, such asPPI or N-FINDR 
(Winter 1999) have been developed. These algorithms detect those pixels that define the convex hull of the n-dimensional feature 
space of hyperspectral image data. This produces endmembers that express ‘spectral extreme’ features. Although the resulting 
endmembers are useful for spectral unmixing approaches, they are not suitable for material detection approaches like SAM. 
Algorithms like SAM, determine the spectral similarity between a pixel’s spectra and a given endmember. In contrast to 
endmembers that are defined by ’spectral extremes’, SAM needs endmembers that represent mean spectra of material types in order 
to produce best possible results between spectrally similar material classes.  
 
The objective of this work is the development and implementation of a unsupervised image endmember definition approach for 
material detection methods like SAM. Information on the high spatial resolution orthophoto is used to detect homogeneous areas in 
the hyperspectral image data. Pixels of the hyperspectral image data in such homogenous areas are marked as endmember 
candidates. Then, a spectral correlation analysis (van der Meer and Bakker 1997) is used to calculate the spectral similarity between 
the candidates. At n given candidates, the n*n correlation matrix of all candidates is introduced as a new feature space that expresses 
spectral similarity between the candidates. Candidates with similar spectral behavior are grouped by a density based cluster 
algorithm. The mean spectrum of each cluster is stored in a spectral library for further processing. In an urban test site, several 
endmember for different materials could be defined by the proposed approach. 
 
 

1. INTRODUCTION 

Hyperspectral image data contains a large number of narrow 
bands that form a high dimensional “image data cube”. To 
process this large amount of data, special classification 
algorithms for spectral unmixing or for material detection have 
been developed. Material detection algorithms like the Spectral 
Angle Mapper (SAM) calculate a deterministic value to express 
the spectral similarity of a pixel to a given reference. Unmixing 
approaches like the Mixture Tuned Matched Filtering (MTMF) 
determine for a measured spectrum the abundance fraction of a 
given reference spectrum. In both cases, the term “endmember” 
is used for the spectral reference definition. 
 
The definition of endmembers should be carried out taking into 
account their intended use. Endmembers obtained by a given 
approach may not be useful for both material detection 
algorithms (e.g. SAM) or for unmixing analyses (e.g. MTMF). 
For unmixing approaches, several manual or unsupervised 
endmember selection methods such as the Manual Endmember 
Selection Tool (MEST) (Bateson and Curtis 1998), the Pixel 
Purity Index (PPI), implemented in ENVI (Boardman et al. 

1995), or the NFINDR (Winter 1999), have been developed. 
These well-known algorithms detect those pixels in 
hyperspectral image data that define the convex hull of a point 
cloud in the corresponding spectral n-dimensional feature 
space. 
Algorithms for material detection purposes, like SAM, 
determine the spectral similarity between a pixel’s spectra and a 
given endmember. In contrast to endmembers for spectral 
unmixing, which often represent ’spectral extreme’ features, 
algorithms like SAM require endmember containing the ‘mean 
spectrum’ of a material class in order to produce the best 
possible results between classes with a similar spectral 
behaviour. The determination of reference spectra as an 
endmember for material detection approaches like SAM could 
be carried out by measurements in situ with a field spectrometer 
or by a selection of pixels in the image data. The objective of 
this work is the development and implementation of an un 
supervised image endmember definition approach. 
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2. METHODS 

2.1 Determination of Endmember Candidates 

As a first step of this approach, all candidate pixels for image 
endmembers, have to be determined. A pixel in the 
hyperspectral data that contains the reflectance spectrum of a 
homogenous surface is a candidate for a material definition. 
Due to the relatively coarse spatial resolution of imaging 
spectrometers (e.g. ground sampling distance of > 3 m), many 
pixels contain mixed spectra. These pixels are mostly located at 
the intersection of two surfaces with different spectral features. 
If the geometry of these objects is known, these mixed pixels 
could be filtered out and disregarded in further processing. In a 
multisensor environment, spatial high resolution image data 
could be segmented in order to retrieve this necessary geometry 
information. In this study, the image segments were derived by 
use of a region growing segmentation technique, the Fractal Net 
Evaluation Approach (FNEA) (Baatz abd Schäpe 1999, 
eCognition software), from an digital orthophoto (0.25 m 
ground sampling distance). 
After superimposing the image segments of the orthophoto on 
the hyperspectral image, pixels completely (within N4 or N8 
neighborhood, see figure. 1) included in these segments were 
chosen as candidates for an endmember definition. 
 

   
Figure 1: Segments (yellow lines) of an orthophoto (shown as 

blue background) are used to determine candidate 
pixel in the hyperspectral image data. N8-filtered 
candidates are shown in yellow, N4-filtered, in red. 

 
Then, the endmember candidates pixels were grouped 
according to similar spectral characteristics. The geometric 
information (link between candidate and segment) is not used in 
the following approach. As a consequence, invalid image 
segments containing different material spectra have no 
influence on the following definition process. 
 
2.2 Measuring spectral similarity 

Endmember candidates were clustered by their spectral 
similarity using a distance based approach. For this, a feature 
space to determine the proximity matrix between all objects to 
be clustered was developed In a first approach, the original 
spectral feature space was taken into account. However, often 
in urban settings the spectra of reference materials are in turna 
result of a spectral mixture of different (man-made) materials. 

As a result, this mixture leads to flat spectra without distinct 
material specific spectral charateristics. In addition, some of 
these materials have similar spectral features and are hardly 
separable in an original or transformed feature space, as shown 
in figure 2. 
 

  
Figure 2: Image endmembers of urban materials in a MNF 

feature space (first three axes of MNF feature 
space). Reference pixel of mixed materials are 
mostly located in the center of the point cloud. 

 
Deterministic approaches like SAM allow the construction of 
an advanced feature space for the separation of spectrally 
similar candidates. The image spectra of all candidates can be 
stored in a binary array and afterwards classified with SAM. 
The reference spectra for this classification step is the spectrum 
of the first candidate. For example, a group of 23 candidates 
will lead to 23 spectral angles (result of SAM) for each 
candidate. This leads to a matrix as shown in figure 3. Here, the 
spectral angle was calculated for each candidate with respect to 
the other 22 candidates. The SAM matrix in Figure 3 shows 
distinct groups of candidates with similar SAM angles. 
 

 
 
Figure 3: First seven Rows of a matrix with spectral angles. 

Row one, column two is the angle (value = 0,11) 
between candidate one and candidate two. Distinct 
groups of candidates are shown in color. 
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The matrix with the SAM-results (see figure 3) can also be 
viewed as a n-dimensional feature space. By representing the 
first row on an x-axis, the second on a y-axis and the third on a 
z-axis, a new feature space can be created (see figure 4). 
 

 
Figure 4: Three dimensional feature space produced by the rows 

of the SAM matrix displayed in figure 3. 
 
The feature space in figure 4 shows seven distinct clusters due 
to the spectral diversity of the given material groups. The high 
correlation between the candidates is evident. Nevertheless, 
distinct groups of candidates are visible. As a result, for each 
material, a group of spectral similar candidates, belonging to 
this material, can be detected. 
 
Taking the same material types and increasing the number of 
candidates, a feature space is formed like in figure 5. The 
deistinct groups, as shown in figure 4 are connected. A 
definition of seven destinct clusters is hardly possible. 
 

 
Figure 5: Three dimensional feature space, spawned by three 

rows of the SAM-matrix. For the displayed data, 
600 candidates were processed.. 

 
The use of SAM-results to determine spectral similar groups of 
candidates as displayed in figure 4 and figure5 show first 
promising results. To improve the performance of this 
approach, another statistical measure is introduced in the 
proposed algorithm.  
 
The correlation coefficient is another deterministic approach for 
the estimation of spectral similarity. The correlation coefficient 
allows a more precise differentiation of spectrally similar 
materials (Carvalho et al., 2000). This technique is also used in 
classification approaches like the Cross Correlogram Spectral 

Matching (CCSM, van der Meer and Bakker, 1997) and pattern 
recognition in hyperspectral image data (Ingram et al., 2004).  
To estimate the spectral correlation between two given image 
pixels, first the sum of reflectances rij of a pixel pj: 
 
 

 (1) 
 
 
are transformed by subtracting the mean value of rj and 
normalizing to one, so that the spectra have the following 
characteristics: 
 
 

    (2) 
 
 
The correlation coefficient could be estimated by: 
 
 

(3) 
 
 
The calculation of the correlation coefficient between n 
candidates results in a n×n correlation matrix. The rows of the 
correlation matrix can be used as the definition of the 
coordinateaxis of a new feature space (see figure 6). 
  

 
Figure 6: Rows of a correlation matrix as feature space which is 

highly correlated. 
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The first three rows of a correlation matrix of 444 candidates 
are displayed in Figure 6. Figure 7 shows a different selection 
of rows (1,3 and 13). 
 

 
Figure 7: Rows of a correlation matrix as feature space. 
 
The separability of candidates in the feature space is highly 
dependant on the selection of rows from the correlation matrix, 
which defines the axes of the new feature space. As a 
consequence, a Principal Component Analysis (PCA) is carried 
out within the complete correlation matrix data. The result is a 
PCA-transformed correlation matrix with rows sorted by the 
eigenvalues of the PCA. The rows of this transformed matrix 
can also be used as definition for the coordinate axes of an n-
dimension feature space (see Figure 8).  
 

 
Figure 8: Feature space, resulting from a PCA-transformed 

correlation matrix. The first three PCAcomponents 
define the axes of the feature space. 

 

 
Figure 9: A combination of higher PCA components (3, 5 and 

7) still shows distinct groups of spectral similar 
candidates.  

 

2.3 Clustering of similar spectra 

Candidates in the PCA-transformed feature space build linear 
point clouds (Figure 8). Clustering algorithms such as k-means 
or ISODATA offer no solution to separate distinct clusters from 
an aggregated cloud of points like the one shown in Fig. 8. 
Therefore, the density based clustering algorithm (also known 
as DBSCAN) was used here to cluster the candidates. A radius 
representing the neighborhood of a point is predefined by the 
user. This neigborhood has to contain a minimum number of 
points in order to build a cluster. The radius and the number of 
points in the given neighborhood are the two threshold values 
defining the ’density’ of a cluster (Figure 10). 

 
Figure 10: For a given radius and a minimum numbers of 

reachable neighbor points, point O is a core object 
of a new cluster including neighbor points like P. 

 
In further iterations, reachable neighbors are gradually included 
into the cluster. Based on this strategy, point clouds with 
drawn-out shapes could be clustered (see figure 11). 
 

 
Figure 11: The points O and P belong to the same cluster, 

connected through the core objects (displayed in 
red). 

 
For this study, the radius was estimated by the mean minimum 
distance to the next neighbor over all points in the dataset. The 
number of neighbors, was chosen to range from 1 to 3. The 
results of the described clustering algorithm is shown in figure 
12. 
 

 
Figure 12: First 16 clusters generated by DBSCAN. 
 



 

 21

2.4 Building the spectral library 

DBSCAN provides a Cluster-ID for each candidate. In case of a 
clustering, a candidate retrieves the ID of the assigned cluster. 
A negative ID (-1) indicates those candidates, who are not 
assigned to any cluster. As a result of the clustering process, a 
mask image with the same extent as the hyperspectral image 
data contains these cluster IDs at the geometric location of each 
candidate. Pixels with the same ID (member of a cluster) could 
be joined into one group (using a region of interest, ROI, Envi). 
Averaging the corresponding spectra of such a group in the 
hyperspectral dataset leads to a reference spectra. 
 

  
Figure 13: Image pixel, grouped by their cluster ID on the left 
lead to a group of 49 pixel (right).  
 

 
Figure 14: The average spectrum of a cluster (Fig. 13) and 
statistical parameters (min, max, stddev) can be estimated by 
use of standard software. 
 

3. RESULTS 

The proposed method was used to detect ten different known 
materials in an urban test site (500 m x 1000 m). After an image 
segmentation of an orthophoto, covering the whole scene, a 
subset of image segments with six known ground materials and 
four known roofing materials was used to estimate the set of 
endmember candidates. 753 candidates were detected and 
clustered by DBCSAN. The first 16 cluster were stored in a 
spectral library, the statistical properties of the reference spectra 
are shown in table 1. 

Table 1: The first 16 clusters and their statistical properties. 
 

Cluster # Pixels Standardd
eviation 

Material 

1 101 1,1 % Granite (pavement) 

2 79 7,5 % Clay (red  roofing) 

3 51 0,5 % Granite (pavement) 

4 58 5,3 % Vegetation 

5 47 11,2 % Concrete rooftop 

6 48 5,3 % Clay (dark roofing) 

7 57 4,1 % Copper 

8 59 3,8 % Asphalt/Bitumen 

9 22 16,5 % Zinc 

10 21 1,1 % Copper 

11 57 0,3 % Water 

12 16 0,5 % Concrete 

13 16 0,3 % Clay pavement 

14 10 0,3 % Water/vegetation 

15 9 4,2 % Clay (red roofing) 

16 7 0,3 % Gravel 

 
All ten material types known to be present in the image were 
included in the 16 clusters shown in Table 1 . Some material 
clusters like granite (clusters 1 and 3) and red clay roofing 
material (cluster 2 and 9) were  erroneously classified as two 
different groups. However, the high standard deviation of some 
roofing materials (e.g. cluster 5 with 11,2%) shows that this 
method is able to correctly classify pixels of the same material 
with different surface slopes or aspects. 
 

4. CONCLUSION 

The presented algorithm for an unsupervised endmember 
selection shows first promising results. A reliable 
transformation method from the original spectrum to a feature 
space that expresses the similarity of spectra has been 
developed. The following density based clustering lead to 
useful pixel groups, which average spectra can be stored in a 
spectral library. Future steps will be the development of a 
framework application to assist the user for quality assessment 
and a vsiual control on the clustering process. 
Finally, by use of this approach, the user has only to examine 
the results of the clustering process and to join some clusters 
manually, if necessary. The manual selection of image pixel for 
a certain material is replaced by this approach. 
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