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ABSTRACT:

The use of remote sensing for urban applications requires high resolution data with respect to geometry and spectral information
in order to deal with the complexity and the variability of urban scenes. Unfortunately, the available sensors provide data of either
high geometrical or high spectral information. Optical satellite sensors improved a lot with respect to the available ground sampling
distance (gsd). Most prominent examples are IKONOS, QuickBird and OrbView. But this improvement was made at the expense of
the spectral information by focussing on the visible and near-infrared using four spectral channels. Optical airborne sensors always
had high geometric resolution. Nowadays hyperspectral sensors are available delivering almost continuous spectral information from
visible to shortwave infrared with a resolution of a few meters depending on flying height and velocity. Such data offer the possibility
to discern different surface materials showing differences in their spectral response not visible in multispectral data, but may not have
the same high geometric resolution. This paper compares the use of different high resolution data for urban remote sensing applications
focussing on hyperspectral data and its fusion with laser scanning data.

1. INTRODUCTION

Urban areas exhibit a high complexity and variability with re-
spect to the present objects, their geometry and their appearance.
Thus, high resolution data with adequate georeferencing is in-
evitable for the use of remote sensing in urban areas. With the
increased availabilty of such data during recent years, an increase
of remote sensing applications in urban areas can be recognised
(cf. (Moller and Wentz, 2005) and preceding workshops and
conferences). These applications range from simpler tasks as for
example the assessment of urban green as indicator for the quality
of urban neighbourhoods to more complex tasks as the extraction
and characterisation of objects — geometry and material — in an
urban scene. For both tasks, geometric high resolution data is a
prerequisite. In addition the second task also requires data with
high resolution spectral data in terms of number of bands with
small bandwidths in order to provide detailed information. In
a research project we investigated the use of hyperspectral and
laser scanning data to derive geometric and material information
about roof surfaces using a segment-based approach (Lemp and
Weidner, 2005b). In this approach the laser scanning data is not
only used to determine the geometry of the roof surfaces, but
also for the classification of materials by data fusion on a deci-
sion level. The spectral and the geometric data are well suited
for data fusion, because both types provide really complemen-
tary information about the objects. The combined use of both
data for material classification improves the classification result
significantly compared to the classification based only on the hy-
perspectral data. Of course, the availability of hyperspectral and
laser scanning data is an optimal case. Therefore, it seems to
be of interest to which extend other spectral data may be used
for such an application. The institute collected different (optical)
data over the last years besides the hyperspectral data, namely
multispectral DAEDALUS data and high resolution satellite data
from QuickBird, both used in our investigations.

Besides the data, the approaches have an impact on the results.
Pixel-based classification schemes like Maximum-Likelihood are
well known. The analysis is (normally) based on the informa-
tion provided by the data for each pixel and do not incorporate
information of each pixel’s neighbourhood. Segment-based ap-
proaches allow for the introduction about relations to neighbour

segments and context information. Although we preferred the
segment-based approach in our research project on roof surfaces,
we also investigated a pixel-based approach for this application,
namely the Spectral Angle Mapper (SAM).

In order to give an overview of our research in urban remote sens-
ing, we will start with a short description of the used data sets in
Section 2.. Section 3. presents two applications. The focus is
on the characterisation of roof surfaces, namley the results ob-
tained by different analysis schemes based on the hyperspectral
and laser scanning data and their quantitative evaluation. (Bo-
chow, Greiwe, and Ehlers, 2003) is the closest related work to our
approach. A similar approach of (Greiwe, Bochow, and Ehlers,
2004) is using HyMap data, high resolution orthophotos and a
DSM - the latter both derived from HRSC-A data. Their focus is
on fusing the high resolution data sets by a segment-based tech-
nique. Our approach differs from the above with respect to the
input data, in particular the laser scanning data. The segmenta-
tion strategy used permits to incorporate geometric and spectral
clues. For classification, we use eCognition, which allows a hi-
erarchical classification and introduction of knowledge by using
the different information sources for different decisions within a
fuzzy classification scheme.

2. DATA

In this section, short descriptions of the data and remarks on the
preprocessing are given starting with the laser scanning data fol-
lowed by the optical data according to their geometric resolution.

Laser scanning: The DSM was acquired in March, 2002, with
the TopoSys II system using the first and the last pulse modes.
For ease of use within different software packages, 1 m x 1 m
raster data sets were generated. These data sets differ not only
concerning the included objects, but also show systematic devi-
ations. For further discussion on this topic refer to (Vogtle and
Steinle, 2003) and (Lemp and Weidner, 2004).

QuickBird: The QuickBird data (Orthoready Standard) with
0.6 m geometric resolution (resampling with nearest neighbour)
for the panchromatic channel and 2.4 m for the multispectral



channels respectively was acquired in summer 2005 with an off
nadir angle of about 11° and a target azimuth of about 34°. A
comparision with existing geodata indicated a linear constant shift
of about 14 m over the entire (almost flat) captured area of Karl-
sruhe. Therefore, a simple translation was performed in order to
account for this shift.

DAEDALUS: The multispectral DAEDALUS data was acquired
in summer 1997. It was georeferenced and orthorectified using a
DSM, which was obtained from first pulse laser scanning data of
the TopoSys I sensor of spring 1997, and has a geometric resolu-
tion of 2 m.

HyMap: The hyperspectral data was acquired in July, 2003,
with the HyMap sensor during the HyEurope campaign organized
by the DLR (German Aerospace Center). The data was prepro-
cessed (atmospheric corrections, geocoding) by the DLR, Oberp-
faffenhofen, using a Digital Terrain Model (DTM) on one hand
and a Digital Surface Model (DSM) derived from first pulse laser
scanning data on the other. The effects of the different underly-
ing surface descriptions are clearly visible in the georeferenced
data. The original data has a ground resolution of 4 m x 4 m. In
order to use the data in combination with the DSM, the data was
resampled to 1 m X 1 m using nearest-neighbour interpolation.

Although the maximal time difference of the acquisition dates
is more then § years, the different data sets can still be used in
combination as changes fortunately only appear in some smaller
areas. During classification based e.g. on optical and laser scan-
ning data, these areas are revealed by inconsistent classification
results. Besides the above mentioned data, aerial images taken in
spring 2001 were used for the generation of a 3D model of the
university campus including also information about the surface
materials. This data serves as reference data for the evaluation of
the roof surface classification.

3. APPLICATIONS

3.1 Urban green

The City of Karlsruhe is interested in determining the amount of
urban green areas. Although the city has high quality geodata
on use of parcels, this data does not necessarily indicate vegeta-
tion areas. An example for this are trees in streets: the landuse
indicated by the geodata is street, location of trees may also be
indicated in the geodata base, but no information on the apparent
green is included. Therefore, the task is to determine the area of
apparent green as seen from above based on data sets of satellite
or airborne sensors, which is an easier task than the determina-
tion of sealed surfaces, which may be camouflaged by the trees.
For this purpose, the QuickBird and the DAEDALUS data sets
are suited, because they both provide information on vegetation
by their near-infrared channels with almost the same geometric
resolution. In this case the QuickBird data was choosen, because
of its acquistion date in 2005. Based on the near-infrared and red
channels, the NDVI was computed as the main criterion for the
classification. The simplest way of classification is just thresh-
olding the NDVI data set and thereby perform a pixel-based clas-
sification. The procedure was chosen for its simplicity and its
applicabiliy for large data sets. The comparsion of the result with
the existing geodata by the City of Karlsruhe is still pending. For
the discrimination of low vegetation and trees, the laser scanning
data provides the heights as additional information. In this case,
a pixel-based classification based on NDVI and e.g. first pulse
data would lead to a salt-and-pepper-like result of classification,
because although in areas with trees first pulses may reach the

Figure 1. Urban green — Segmentation I and Classification by
eCognition
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Figure 2. Urban green — Thresholding on NDVI

Figure 3. Urban green — Segmentation II and Classification by
eCognition

ground. Therefore, a segment-based approach seems to be ad-
vantageous, although only the spectral and height information is
used for classification and no relations among segments. This
is partly due to the fact that we are only interested in vegetation
areas (cf. (Moller and Blaschke, 2005)).

For the segmentation of the data sets with eCognition the red and
near-infrared channels of QuickBird and the first pulse laser scan-
ning data are used. The parameters for the segmentation with
eCognition are set to consider mainly the layer information and
not the shape of the segments with a small scale parameter. The
result of segmentation and subsequent classification is shown in
Fig. 1. Dark green indicates trees, dark yellow bushes and lawn.
For comparison the result of NDVI thresholding is displayed in
Fig. 2 (vegetation areas shown in green) and a result of eCogni-
tion with a larger scale parameter in Fig. 3. Besides the discrim-
ination of vegetation type, the results of the pixel- and segment-
based classifications do not differ significantly (visual inspec-
tion). The reason for this is the used segmentation: in order to
capture also small vegetated areas and single trees, the scale pa-
rameter of eCognition was choosen to be small. Larger values for



Figure 4. Aerial image

the this parameter lead to larger segments, which represent vege-
tated and non-vegetated areas, thus mixed segments. Sometimes
it is difficult to achieve a good segmentation result with respect
to the application, but the quality of segmentation is decisive for
the quality of the classification.

3.2 Roof Surface Characterisation

The aim of this project is the quantitative assessment of pollu-
tants on urban surfaces with focus on roofs based on chemical
analysis and remote sensing methods. For this purpose we have
to characterise roof surfaces by their geometry and material. This
characterisation is based on the analysis of laser scanning and hy-
perspectral data. The fact that we are focussing on the balance of
contained pollutants in our application eases in some cases the re-
quirements on the classification, e.g. a number of flat roof types
consist of a bitumen sealing with a variable upper layer of differ-
ent stonelike materials. In such cases the bitumen layer seems to
have the main influence on pollution, while the stone cover is of
minor importance. Therefore, a separation in different classes is
not nessessary in this case.

Our first approach used the laser scanning data to derive geomet-
ric information about the surface patches. The subsequent mate-
rial classification was solely based on the hyperspectral data. De-
spite the high spectral resolution of this data, it was not possible
to discern the relevant classes for our application with high accu-
racy (Lemp and Weidner, 2004). Therefore, we extended this ap-
proach by integrating geometric information, namely the slope of
the roof segments, into the classification, observing the fact that
the slope is related to the material - at least qualitatively (Lemp
and Weidner, 2005a). An example for this are the spectrally sim-
ilar classes slate and stonelike/bitumen: slate roofs are normally
sloped. Our data analysis is structured in two main parts: (1) the
geometrical segmentation using an algorithm developed at IPF
followed by a second segmentation step by eCognition including
spectral information and (2) the classification using eCognition.
The quality of segmentation is crucial as it impacts directly the
classification result.

3.21 Segmentation The segmentation procedure within eCog-
nition combines spectral and shape information using a region
growing approach. The underlying model assumes constant val-
ues for each segment’s channel, which is only adequate when
dealing with flat (horizontal) roofs, but not when dealing with
roofs consisting of planar (horizontal and inclined) faces, which
is our assumed model, and using the laser scanning data as main
information. In this case, the segmentation leads to elongated
segments on sloped roofs (cf. Fig. 5 and Fig. 4 showing an aerial
image for comparison). Such a segmentation may be used for
classification, but does not represent meaning full segments with

Figure 5. Segmentation eCognition (last pulse)

Figure 6. Segmentation eCognition (last pulse, spectral)

Figure 7. Segmentation IPF (last pulse)

Figure 8. Segmentation IPF (last pulse, spectral)
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Figure 9. Class hierarchy

respect to the roof geometry. We therefore use a two step ap-
proach. First, we apply our segmentation procedure for laser
scanning data which searches for planar faces by region grow-
ing. Details of the algorithm are given in (Quint and Landes,
1996) and the application for laser scanning data is already de-
scribed in (Vogtle and Steinle, 2000). Parameters are set to in-
clude smaller roof extensions in the surrounding larger surface
patch (cf. Fig. 7). The use of geometric data only may lead to
problems, in case a planar roof surface patch consists of subareas
of different materials. In a second step the first segmentation re-
sult is introduced into eCognition using the spectral data to split
up the initial segments in order to take care of material changes.
We use two spectral channels, which are also used for classifica-
tion later on to refine the geometric segmentation. An example is
shown in Fig. 8. For comparison the result of eCognition using
last pulse and spectral data is given in Fig. 6.

3.22 Classification The main task is to identify specific char-
acteristics of the spectra and the geometry to select an appropriate
set of channels for classification. Besides the spectral channels,
channels providing geometric information may be derived from
laserscanning data. We actually use 20 hyperspectral channels
manually selected based on the spectra of the surface materials
and 3 geometric channels, namely height information from first
and last pulse data as well as slope information.

The class hierarchy shown in Fig. 9 mainly reflects the sequence
of fuzzy decisions. First, we classify objects and non-objects us-
ing the height information from laser scanning. In a second step
we derive a set of candidate roofs by removing vegetation areas
from the objects applying an NDVI (channel 25 and 15 of the
HyMap-data) and smaller segments based on their size and their
neighbourhood relations to segments of the classes non-object
and vegetation. Thus, this classification procedure may in prin-
cipal also be applied, if only a normalized DSM from first pulse
data or derived from other sensor data is available. The roof seg-
ments are then classified according to their material and geom-
etry. For this purpose, we have to define membership functions
for each class and feature to be used, starting with those material
classes with the most significant spectral differences to other ma-
terials. Tile brick roofs show an increase in the spectrum from
the first channels to the last, which seems in our case to be in-
dependent from the age of the material. The spectrum of copper
has a significant decrease from channel 8 to 20, while aluminum
has high values in the first channels and shows some character-
istic slopes in the spectrum, so we use the channels 1 and 2 and
a channel ratio. Galvanized zinc is decreasing between channel
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Figure 10. Reference

32 and 40. Slate can be separated from other stonelike surfaces
with respect to the slope: slate surfaces usually have a signifi-
cant slope, while surfaces of gravel and stone plates are flat. As
mentioned above the better part of pollution related to gravel and
stone plate surfaces is caused by a bitumen layer. Therefore, the
three classes gravel, stone plate and bitumen are fused to one
main class stonelike/bitumen.

3.23 Comparision of Results with Respect to Data and Ap-
proaches In this section we present and discuss the results for
the central campus area using the approaches described above.
We compare the results with the existing reference data (Fig. 10).
Furthermore, we also present results by the pixel-based SAM-
approach for the hyperspectral data and will discuss the limita-
tions of DAEDALUS data for roof surface classification.

Fig. 11 displays the result of roof surface classification based on
the combined geometric and spectral segmentation, again using
the colour coding given in Fig. 9. The membership values of all
classes are computed using the fuzzy and(min), which means that
all membership conditions must be complied. The stability as
derived by eCognition based on the differences of membership
values is lower for smaller segments. This problem is caused by
the limited geometric resolution of the HyMap data. The class
stone like/bitumen has a much higher stability than we could ob-
tain using the subclasses gravel, stone plates and bitumen as in
(Lemp and Weidner, 2004). Fig. 12 displays the comparison be-
tween classification and reference. The green segments represent
the correct classified ones with about 90% of the total area of
roof surfaces. Incorrect classified surfaces (red) are accumulating
to approx. 8%. These include also roof surfaces for which the
assignment of the reference — zinc or aluminium — is uncertain,
because even by field checks, visual discrimination is sometimes
impossible. The area with uncertain reference is about 3.4% of
the total area, thus leaving 4.6% of total area as truely incorrect
classified segments, most of them small with sizes < 10 m?.
Zinc and aluminum surfaces are grouped to metal surfaces, be-
cause they are separated in the eCognition classification, but not
in the reference data, due to the problems described above.

For comparison with the results given above Fig. 13 shows the
classification results based on hyperspectral data only and Fig. 14
displays the comparison of this result with the reference data. A
visual inspection already indicates the lower quality of the clas-
sification results. Most incorrectly classified segments are roof
segments of classes for which the seperabilty based on the hy-
perspectral data is low. The overall accuracy is about 60% only.
In order to investigate if the decrease is really due to the fact
that no roof slope information is used for the classification, we
performed a SAM classification based on the hyperspectral data.
For this approach, we used a building mask derived from the laser
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Figure 11. Classification A based on hyperspectral and laser
scanning data

«y

‘-\ ! "..:;:.: VL ‘— - K
'y "‘5 [} ——— "
Ve thig 3 ‘_‘.'q o =
° i .
O .— p—

i\ N \ e LA

Figure 13. Classification B based on hyperspectral data only

Figure 14. Comparison of classification B with reference

scanning data and then applied SAM for pixel-based classifica-
tion within this mask. First of all, it was difficult to define end-
members due to the low resolution compared to the complexity
of roof structures. We therefore introduced several endmembers
for some material classes. The original result shows the typical
salt-and-pepper-effect of pixel-based classification. In order to
compare the results with those from the approach above, we ag-
gregated the classes. The overall accuracy of the classification
was in the same range of about 60% as for the segment-based
classification using no roof slope information. Again, problems
occured at borders of buildings, where pixels are not assigned to
a class. For all approaches the use of either the DSM or the DTM
as underlying surface for georeferencing the hyperspectral data
was of minor impact on the results. In our opinion, this is also
mainly due to the low geometric resolution of the hyperspectral
data as compared to the laser scanning data. It definitely will have
an impact with higher the geometric resolutions.

For comparison we also analysed the DAEDALUS and the laser
scanning data for roof surface classification. As described above
for the SAM-approach, we used the laser scanning data to iden-
tify building areas and applied Maximum-Likelihood classifica-
tion within this building mask. Although the geometric resolution
of the DAEDALUS data is higher by factor 2, the spectral resolu-
tion does not allow for the discrimintation of different materials.

4. CONCLUSIONS

In this paper we presented two applications of urban remote sens-
ing — vegetation and roof material clasification — based on spec-
tral and geometric information given by high resolution optical
systems and airborne laser scanning. For both applications we
applied different classification schemes and obtained similar re-
sults. For roof surface classification the results improved signif-
icantly by using the laser scanning data not only as basis to out-
line the building areas, but by using the geometric information,
namely the slope of the roof segments, also for the classification
in combination with the optical data. In our opinion hyperspec-
tral data is mandatory in order to classify roof surface materials
due to its high spectral resolution. Higher geometric resolution
would certainly reduce the problems at segments’ border, but it
seems doubtful, if it would increase the overall accuracy, because
in higher geometric resolution data more details of roofs are vis-
ible, which are generalized by the lower resolution. In both ap-
plications the segmentation as prerequisite for a segment-based
classification is crucial also for the classification result. For roof
material classification, we used a combination of an own seg-
mentation approach using the laser scanning as input data and the
segmentation of eCognition. This was essential as we need mean-
ingful planar constant or inclined segments to derive the slope
information.
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