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ABSTRACT: 
 
 Several works of image processing identified the advantage of merging high spectral resolution images with high spatial resolution 
images, in order to obtain better images and to retrieve more information in several fields of research, such as earth observation 
research. In this context, we propose, in this paper, the improvement of the spectral resolution of ETM images of Landsat satellite 
using MeRIS data of ENVISAT satellite. The two characteristics of both images (spatial and spectral) are then preserved. 
The technique, inspired from the MMT algorithm approach, is proposed for unmixing the data of a lower resolution   by its 
combined processing with the data of a higher-resolution in order to generate images which have 30 m spatial resolution and 15 
spectral bands.   
For our work, because some of missing of some data about the Algerian coastal zones and problems of registration between ETM 
and MeRIS images, we used for this study images from La Camargue (France).  For the validation of the results, we retained the 
evaluation criteria of different parameters. The quality of classification plays a great role in this method (it influences directly on the 
quality of merged image).  The best characteristics of the two images (spatial and spectral) are then preserved in the resulting image. 
 
 
 

1. INTRODUCTION 

Fusion of multisensor imaging data enables a synergetic 
interpretation of complementary information obtained by 
sensors of different spectral ranges (from the visible to the 
microwave) and/or with different number, position, and width 
of spectral bands (Richards, 1999) (Minghelli-Roman, 1999) 
(Minghelli-Roman and al., 2001). 
Detailed satellite investigations of the land surface require the 
spatial resolution of satellite imaging instruments of within a 
few tens of meters, since due to the land inhomogeneity larger 
pixels have a high probability to be composed of various classes 
of land objects. To avoid a significant number of 'mixed' pixels, 
the resolution of the instrument should be significantly better, 
than a typical size of homogeneous units. 
In this context, the Medium Resolution Imaging Spectrometer  
(MeRIS) sensor, launched onboard Envisat in 2002, was 
designed for sea color observation, with a 300-m spatial 
resolution, 15 programmable spectral bands, and a three-day 
revisit period. Three hundred meters is a high resolution for an 
oceanographic sensor, but it is still too rough for coastal water 
monitoring, where physical and biological phenomena require 
better spatial resolution. On the opposite, multispectral Landsat 
Enhanced Thematic Mapper (ETM) images offer a suitable 
spatial resolution, but have only four spectral bands in the 
visible and near-infrared spectrum, allowing poor spectral 
characterization.  
One of the possible approaches in a multisensor data 
environment is to use the data of higher resolution 
sensors/channels to analyze the composition of mixed pixels in 
images obtained by lower resolution sensors/channels in order 
to unmix them.  
The purpose of this paper is to present the multisensor 
multiresolution technique (MMT) proposed by Zhukov 
(Zhukov and al., 1995, 1996, 1999) and Y.H. Hu (Y.H. Hu and 

al., 1999). This technique is applied by Minghelli-Roman in 
order to combine the spectral resolution of MERIS and the 
spatial resolution of Landsat  ETM, the main steps of the 
method are implemented  and the results are presented for the 
region of La Camargue (France). A validation method is 
proposed based on different statistical quality criteria. 
 

2. METHODOLOGY 

The method is inspired from the MMT (Multiresolution 
Multisensor Technique).  The MMT algorithm is adapted to the 
practical situation in a multisensor data environment when the 
detailed spatial information is available only in the high-
resolution HR image. 
This information is used to analyze composition of the lower 
resolution LR pixels and to unmix them. 
The unmixing of the LR pixels is performed consecutively in 
the moving window mode. In order to unmix the central LR 
pixel in the window, contextual information of the surrounding 
LR pixels is essentially used. In particular, it is assumed that the 
features, that are recognizable in the high resolution HR image, 
have the same LR signals in the central LR pixel as in the 
surrounding LR pixels in the window. 
The algorithm includes the following operations as described in 
figure 1: 
     -  Geometric registration of the two images 
     -  Classification of the HR (ETM) image. 
     - Definition of class contributions to the signal of the LR 
(MeRIS) pixels. 
     - Window-based unmixing of the LR-pixels. 
     -  Reconstruction of an unmixed (sharpened) image. 

 



 

 
 

 
2.1. Image coregistration 

 
First of all, the two images must be geometrically registered. 
This operation is all the more difficult as the resolution ratio is 
important. Because this difficulty and some of missing of some 
data about the Algerian coastal zones, we used for this study 
images from La Camargue (France) (Courtesy offered by A. 
Minghelli-Roman). Generally, the lower resolution image is 
registered on the higher resolution one. The MeRIS image must 
then be geometrically coregistered on the ETM image. 
 
2.2. Classification of ETM Image 
 
The second step of the algorithm is a classification of the high-
resolution LR image (ETM image in our case) into C classes.  
The first step various unsupervised or supervised algorithms can 
be used to perform a spectral and/or textural classification of 
the HR image. The selection of a classification algorithm 
should depend on a specific application. 
In this paper, we will use for this purpose an unsupervised 
Fuzzy-C Means classification (clustering). 
 
 

 

 
 
The FCM clustering algorithm is a multivariate data analysis 
technique and partitions a data set into c ∈ {2,. . ., n-1} 
overlapping or fuzzy clusters. The partitioning of data into 
fuzzy clusters is achieved by minimizing the objective function: 
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In the equation, M is the membership matrix, Ci is the cluster 
centers matrix, C is the number of classes, N is the number of 
data points, and Uij is the degree of membership of sample k in 
cluster i. The parameter m is a fuzzification parameter that 

controls the degree of the fuzziness of the resulting 
classification, which is the degree of overlap between clusters. 
The choice of m = 2 is widely accepted as a good choice of 
fuzzification parameter (Güler and Thyne, 2004). The matrix M 
is constrained to contain elements in the range [0,1] such that: 
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The objective function, JFCM, is minimized by a two-step 
iteration. First, the C matrix is initialized with random values, 
and then the M matrix is estimated from the data set, X, m > 1, 
and C where:  
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The FCM algorithm for partitioning can be summarized in the 
following initialisation steps: 
 
1. Choose a value for the fuzzification parameter, m, with         
m > 1. 
2. Choose a value for the stopping criterion, e (e.g. e = 0.001 
gives reasonable convergence). 
3. Choose a distance measure in the variable-space (e.g., 
Euclidean distance). 
4. Choose the number of classes C, with C ∈ {2,. ., n-1}. 
5. Initialize M = M(0), e.g., with random memberships or with 
memberships from a hard k-means partition. 
 
For our study, the best values obtained after several tests are 2 
for the fuzzification parameter and 0,01 for the stopping 
criterion.  

 
2.3. Determination of Class Spectra 

 
The third step consists on a calculation of the proportion of 
each class within each MeRIS pixel (figure 3). 
Each MeRIS pixel covers 100 pixels of the ETM classification. 
The proportion of each class will be calculated within each 
MeRIS pixel. Let us call P, the vector containing the proportion 
of each class within a MeRIS pixel. 
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where     Pi : proportion of the class i in the MeRIS pixel  
              C : number of classes, 
               r :  ratio of the resolutions of the two images, 

Figure 1.  Synopsis 

Figure 2. Classification of  ETM images 



 

    
Figure 3. Proportion of each class within each MeRIS pixel 

 
For each class, a mean spectral profile is obtained by 

solving the following algebraic system : 
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The  system can be also written as follows : 
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where       Si     : radiance value of the MeRIS spectral band, 
                 N   : total number of classes, 
                P    : vector containing the proportion of each class in 
one MERIS pixel, 
                      

i
kL     : unknown vector containing the spectral radiance 

of each class in the ith MeRIS spectral band,  
               nb MeRIS   : number of MeRIS spectral bands. 
 
When the number of equations (nbMeRIS) is lower than the 
number of unknowns (nbMeRIS x Nc), this matrix system cannot 
be solved with only one MeRIS pixel but when the number of 
MeRIS pixels is greater or equals Nc. Since Nc is generally 
much lower than the number of MeRIS pixels, the number of 
equations is greater than the number of unknowns, which 
allows us to refine solutions using the least squares estimator. 
As a result, the solutions will be less sensitive to the measured 
radiometric error. 

 
2.4. Output Image Generation 
 
The last step consists of substituting to each classified pixel the 
corresponding spectral profile obtained by solving the algebraic 
system. In other words, we generate images which have 30 m 
spatial resolution and 15 spectral bands.   
 

3. RESULTS AND EVALUATION 
 
For our study, for MeRIS level 2 images of the northern 
Algeria, we noticed that “black pixels” were located on land–
water borders (Algerian coastal zones). These mixed pixels are 
not corrected and their MeRIS level 2 reflectance is set to zero 
for all spectral bands. For this reason, we have had some 
problems of registration between ETM and MeRIS images, and 
then images over La Camargue (Southern France) are used for 
this study (Minghelli-Roman and al., 2004).  For the validation 
of the results, we retained the evaluation criteria of the 
following parameters :   correlation coefficient and the average 

quadratic error.  We carried out several tests to specify the 
parameters which lead to the final result. The quality of 
classification plays a great role in this method (it influences 
directly on the quality of merged image).  The final result is 
obtained only after the execution of several tests, and long 
experiments, to lead to a result which comprises high spatial 
and spectral resolutions at the same time. The best 
characteristics of the two images (spatial and spectral) are then 
preserved in the resulting image (figures 6 to 9). 
 
For validation purposes, the resulting image bands have been 
compared to the corresponding ETM spectral bands in order to 
optimize the number of classes. 
 
3.1. Coefficient of correlation Cr  
 
Regarding the figures 4a and 4b, we can remark that the 15 
MeRIS bands are contained in the same spectral range that the 
range from the ETM 1 up to ETM 4 bands. Then, we can apply 
the multispectral classification (FCM) with only the spectral 
bands 1, 2, 3, et 4 of ETM data which are situated in the visible 
and the near infrared domains. 

 

 
a. Spectral range  of  ETM data 

 
b. Spectral range  of  MeRIS data 

 
Figure 4: Spectral range  of  the two images ETM and MeRIS  

 
Then : 

• ETM1  → MeRIS (band2 & band3). 
• ETM2  → MeRIS (band4, band5 & band6). 
• ETM3  → MeRIS (band7, band8 & band9). 
• ETM4 → MeRIS (band12, band13, band14 & 

band15). 
 
From the merged image (i.e. 15 bands of spatial resolution of 30 
m), we generate the M image with four bands as follows : 
 

• Band M1: mean of bands 2 & 3 of merged image 
(pixel to pixel). 

• Band M2: mean of bands 4, 5 & 6 of merged image 
(pixel to pixel). 

• Band M3: mean of bands 7, 8 & 9 of merged image 
(pixel to pixel). 

• Band M4: mean of bands 12, 13 & 14 of merged 
image (pixel to pixel). 

 



 

We calculate the coefficient of correlation between the bands : 
 

• Cr1 = correlation (M1, ETM1). 
• Cr2 = correlation (M2, ETM2).  
• Cr3 = correlation (M3, ETM3).  
• Cr4 = correlation (M3, ETM3).  
 

The coefficient of correlation inter bands is given by : 
 

 (8) 
Where  x  :  pixel value in the band X, 
 y  :  pixel value in the band Y, 
 E  :  Mean, 
 x  : Mean of the variable x in the band X, 

 y  : Mean of the variable x in the band Y. 
 
and the total coefficient of correlation is:  
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The variation of the coefficient of correlation with the number 
of classes is given by the figure 5. 

 
Figure 5. variation of the coefficient of correlation 

 
The function gives a maximum from the number of classes 
N=25 up to N=65. 
 
 
 
3.2. Root mean square error (RMSE)  
 
The criterion chosen for this comparison is the root mean 
square error (RMSE) error which depends on the mean and 
standard deviation differences  
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The mean is given by : 
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The standard deviation is given by :  
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Where ),( ii yxL  : Luminance of pixel ),( ii yx , 

 n  : Number of pixels in the image. 
 
The total root square mean error is given by : 
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For all images, Classifications have been applied on the ETM 
image with different numbers of classes (namely 30, 40, 50, 60, 
100 and 200 classes) in order to assess the influence of this 
number of classes on the fusion output. For our case, the error is 
minimum for 60 classes.  
The method described above has been applied to ETM and 
MeRIS images. The figure 6 shows a color composite of the 
input MeRIS image. A zoom factor of 10 has been applied to 
this image in order to emphasise the difference between the 
ETM and MeRIS resolutions. The figure 7 shows the 
unsupervised classification (FCM method) with 60 classes 
obtained from the ETM image. The input ETM color composite 
image is shown in the figure 8.  
Finally, the resulting image, in the figure 9, is characterized by 
15 spectral bands and a 30 m resolution. A spatial improvement 
can be noted by comparing between Figures 6 and 9. 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

  MeRIS 15,8 et 3 RGB image 
 
 
 
 
 
 
 
 

Figure 6.  MeRIS color composite image 
(300 m, 15 spectral bands). 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3. DISCUSSIONS AND CONCLUSION 
 

The application of the MMT unmixing to a ETM image as well 
as to a MeRIS image has demonstrated a significant 
improvement in sharpness and radiometric accuracy in 
comparison to the original images.  
The analysis of the MMT sensitivity to sensor errors showed 
that the strongest requirement is the accuracy of geometric 
coregistration of the data; the coregistration errors should not 
exceed 0.1–0.2 of the linear pixel size of the low-resolution 
image. This is a strong but not unrealistic requirement to 
modern coregistration techniques 
This communication has shown how a MeRIS image can be 
merged with a ETM image in order to synthesize a new product 
with the best characteristics of each sensor: the spatial 
resolution of ETM images, and the spectral resolution and the 
revisit frequency of MeRIS images.  
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Figure 8. Thematic Mapper color composite  
(30 m, six spectral bands). 

Figure 7. Result of classification with 60 classes applied on 
the Thematic Mapper image 

Figure 9. Resulting image color composite 
(30 m, 15 spectral bands). 


