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ABSTRACT: 
 
Spectral vegetation indices are frequently used to estimate vegetation biophysical/biochemical characteristics. In general they have 
been proposed to reduce spectral effects caused by external factors such as the atmosphere and the soil background. This study 
evaluated narrow band vegetation indices for estimation of vegetation leaf area index. The study takes advantage of using a dataset 
collected during a laboratory experiment. The spectral measurements have been carried out using a GER spectroradiometer. Leaf 
area indices were destructively acquired at the same time. Vegetation types sampled included four different types and sizes of 
leaves. For predicting leaf area index, five widely used vegetation indices were investigated. Narrow band vegetation indices 
involving all possible two band combinations of RVI, NDVI, PVI, TSAVI, and SAVI2 were computed. Cross-validation procedures 
were used to assess the predictive power of the regression model. We observed a significant relationship between the narrow band 
SAVI2 and the leaf area index (R2 =0.78, RMSE=0.57). All other narrow band indices respectively: RVI, NDVI, PVI and TSAVI 
had relatively lower R2 values (0.65≤ R2 ≤0.75) and higher RMSE values compared to SAVI2. Our results showed that bands from 
the SWIR region contain relevant information regarding to canopy LAI and are important for LAI estimation. The study 
demonstrates that hyperspectral data can be used to quantify leaf area index with a high accuracy. 
 
 
 

1. INTRODUCTION 

Leaf area index (LAI) is a key biophysical variable influencing 
land surface processes such as photosynthesis, transpiration, 
and energy balance and is a required input for various 
ecological model (Bonan, 1993). It measures one half of the 
total surface leaf area of the vegetation per unit area of soil 
(background) surfaces. In situ measurements of LAI can be 
time-consuming, expensive and often unfeasible. This leads to 
the striking possibility of using remote sensing data to estimate 
LAI (Wang et al., 2005). Moreover developments in the field of 
hyperspectral remote sensing and imaging spectrometry have 
allowed new ways for monitoring plant growth and estimating 
vegetation biophysical properties as such LAI.  
To minimize the variability due to external factors such as 
underlying soil, remote sensing data have been transformed and 
combined into various vegetation indices. Spectral vegetation 
indices are usually calculated as combination of near infrared 
and red reflectance. These broad-band vegetation indices have 
shown to be well correlated with canopy parameters related to 
chlorophyll and biomass abundance such as green leaf are index 
and absorbed photosynthetically active radiation (Elvidge and 
Chen, 1995). Two common classes of indices have been the 
subject of considerable research : (1) ratio based indices such as 
ratio vegetation index (RVI) (Pearson and Miller, 1972) and the 
normalized difference vegetation index (NDVI) (Rouse et al., 
1974) (2) soil line related indices such as perpendicular 
vegetation index (PVI) (Richardson and Wiegand, 1977) and 
transformed soil adjusted vegetation index (TSAVI) (Baret et 
al., 1989). A large number of relationships have been 
established between these vegetation indices and canopy 
variables including leaf area index (LAI) (Broge and Leblanc, 
2000; Elvidge and Chen, 1995; Rondeaux and Steven, 1995; 

Schlerf et al., 2005; Wang et al., 2005). While most of these 
relationships have been established between broadband 
vegetation indices and canopy LAI, less research has been done 
on investigating these relationships with hyperspectral 
vegetation indices. 
The overall aim of the work was to evaluate the information 
content of hyperspectral reflectance measurements for the 
estimation of LAI. The specific objectives were (i) to determine 
the spectral narrow band vegetation indices that are best suited 
for estimating LAI, and (ii) to determine spectral region which 
are containing relevant information for LAI estimation. The 
study is based on canopy spectral reflectances measured during 
a laboratory experiment. 
 
 

2. MATERIALS AND METHODS 

2.1 Experimental Setup 

Four different types of natural vegetation with different leaf 
shapes and sizes were selected for the study. From each species 
six pots were grown and examined. The plants were namely 
“Asplenium nidus”: an epiphytic fern which has apple green 
leaves that will reach up to about 50 cm long by 20 cm wide, 
“Halimium umbellatum”: a Mediterranean procumbent shrub 
which has crowded leaves at apex of branchlets, the leaves are 
linear and about 25mm long, “Schefflera arboricola Nora”: a 
shrub with palm shaped leaves, which are dark green and are 
palmately compound with 7-9 leaflets. The individual leaflets 
are sometimes about 7.5 cm long, and “Chrysalidocarpus 
decipiens”: a single trunked or clustering palm to about 20m 
high which has slightly plumose leaves.  



 

In order to generate a wider range of canopy spectra from each 
species, the effects of variation in LAI, soil brightness and 
canopy chlorophyll content were considered. The latter was 
achieved, by dividing the pots (from each species) randomly 
into two equal groups (3 pots in each group) on 8th March 
2005. One group (12 pot) were placed in the reach nutrient soil 
and the other group (12 pots) were placed in a very poor soil in 
order to reduce the nutrient and thus to reduce the amount of 
chlorophyll. After four weeks, according to the SPAD readings 
(SPAD-502 Leaf Chlorophyll Meter, MINOLTA, Inc.), the 
latter was achieved. . 
Spectral measurements with GER 3700 Spectroradiometer 
(Geophysical and Environmental Research Corp.) were taken in 
a remote sensing laboratory where all the walls and ceiling were 
coated with black material in order to avoid any ambient light 
or reflection. The measurements started by placing three pots of 
same species in a 50cm x 50cm soil bed, such a way, that they 
would form a homogenous canopy in the sensor’s field of view 
. The readings were normalized to bi-directional reflectance by 
means of a spectralon reference panel (50cm x 50cm) of known 
reflectivity. Reference measurements were taken after every 
eight target measurements. 
In order to manipulate a variation in LAI, the leaves in the inner 
side of the pots were harvested in 6 steps. In each step, after 
every eight replicate of spectral measurements from the canopy, 
we harvested approximately 1/6 of the total canopy (total 
leaves). Each time that we separated a leaf or a portion of the 

leaves we measured its surface area with the LI-3100 scanning 
planimeter. The measured surface area of the leaves was 
divided by the ground area to calculate the leaf area index               
(LAI, m2 m-2). 
 
2.2 METHOD 

An Average spectrum was calculated from every eight replicate 
measurements. A moving Savitzky-Golay filter (Savitzky and 
Golay, 1964) of 15 nm wide was applied to the reflectance 
spectra to eliminate sensor noise (2nd degree polynomial). 
Cubic interpolation of the data into 1 nanometer interval 
ensured detailed investigation on the spectrum and made the 
rest of the calculations smoother.  
Narrow band vegetation indices were computed using all 
possible two wavelengths combinations involving 2000 
wavelengths between 400 nm and 2400 nm                        
(2000 x 2000=4 x 106 wavelengths combinations). The soil line 
parameters (slope “a” and intercept “b”) were calculated from 
the soil spectral measurements. We assumed that the soil line 
concept, originally defined for the red-NIR feature space can be 
transferred into other spectral domains (Schlerf et al., 2005; 
Thenkabail et al., 2000). So it was thought that the soil line is 
present between all wavelengths. The narrow band RVI, NDVI, 
PVI, TSAVI and SAVI2 were computed according to table one. 
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(5) (Richardson and 

Wiegand, 1977) 

Table 1. Vegetation indices formulas used in the study. ρ denotes reflectance, λ1 and λ2 are wavelengths and a and b are the soil line 
coefficients. 
 
 
2.3 Regression and validation 

Vegetation indices are often correlated with LAI through a 
linear or exponential model, depending on the existence of 
saturation effect. Most vegetation indices exhibit decreasing 
sensitivity followed by saturation with increasing greenness 
measures. However, some vegetation indices tend to be 
almost linearly related to canopy greenness with no 
saturation (Broge and Mortensen, 2002; Chen et al., 2002; 
Goel, 1989; Hinzman et al., 1986; Schlerf et al., 2005). We 
used linear regression approach for modeling the relationship 

between LAI and narrow band vegetation indices. Cross 
validation procedure was used to validate the regression 
models. This implied that for each regression variant, (where 
n = 95) we developed 95 individual models, each time with 
data from 94 observations. The calibration model was then 
used to predict the observation that was left out. As the 
predicted samples are not the same as the samples used to 
build the models, the cross validated RMSE is a good pointer 
of the accuracy of the model in predicting unknown samples. 
 
 
 



 

3. RESULTS AND DISCUSSION 

As expected, the measured spectra reflected a wide range of 
variation in LAI (table. 2). LAI varied between 0.3 m2 m-2 
and 6.11 m2 m-2 with an average of 1.69 m2 m-2. 
 
Total 
samples 

Min LAI 
m2 m-2 

Mean LAI 
m2 m-2 

Max LAI 
m2 m-2 

STDev 
LAI 

95 0.30 1.69 6.11 1.19 

Table 2. Summery statistics of the data acquired during the 
experiment. 
 
Canopy reflectances of all plant types with an approximate 
LAI of 1.5 are shown in figure one; like any other green 
vegetation spectra, they all have a high reflectance in the 
near infrared and low reflectance in the visible regions. 
However, their red and near infrared reflectance values 
significantly vary among each other. This variability can be 
attributed to variations in foliar optical properties (i.e. canopy 
chlorophyll contents) and differences of canopy architectures 
(Gitelson et al., 2003; Jackson and Pinter, 1986). 

 
 
Figure 1. Spectral reflectance of different canopy species 
with an LAI of 1.5. 
 
 
For both, the ratio indices and soil based indices, to 
determine the optimal narrow band vegetation index, the 
coefficient of determination (R2) between all possible two 
band combination of vegetation index and LAI were 
computed. An illustration from these results is shown in 2-D 
correlation plot in figure two. 
Band combinations that formed the best indices for 
determining LAI were recognized based on the R2 values in 
the 2-D correlation plot (table 3). In figure three the regions 
where relatively high values of coefficient of determination 
R2 (R2>0.7) exist are highlighted for all vegetation indices. 
 

VI λ1 (nm) λ2 (nm) R2 
RVI 652 653 0.749 
NDVI 652 653 0.748 
PVI 1132 1241 0.741 
TSAVI 1940 1968 0.681 
SAVI2 727 1967 0.786 

Table 3. The wavelength positions and the coefficient of 
determination (R2) between the best performing narrow band 
indices and LAI. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. 2D correlation plot that illustrates the correlation of 
determination (R2) between narrow band RVI values and 
LAI. 
 
 
Although the near infrared region has been the keystone of 
the ubiquitous vegetation indices (NDVI, RVI), but our 
results show that for most indices, bands from the SWIR 
region contain more information relevant to canopy LAI than 
of red and near infrared bands and are important for LAI 
estimation (figure 3). As it is clear from figure three the “hot 
spots” are mostly have occurred in this region. 
These results support findings of previous studies by (Brown 
et al., 2000; Cohen and Goward, 2004; Lee et al., 2004; 
Nemani et al., 1993; Schlerf et al., 2005), that suggested a 
strong contribution of SWIR bands to the strength of 
relationships between spectral reflectance and LAI. 
Considering that the SWIR bands were important for most of 
VI in this study, vegetation indices that do not include this 
spectral region may be less satisfactory for LAI estimation 
(Lee et al., 2004). A number of other studies have recognized 
this region of the reflectance spectrum as potentially 
important for tracking vegetative properties (Asner, 1998; 
Cohen et al., 2003b; Eklundh et al., 2001). 
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Figure 3. The “hot spot” regions where there are relatively high values of coefficient of determination R2 (R2>0.7) between band 
combinations and LAI. Note that only in case of TSAVI the R2 value is greater than 0.6 (R2>0.6). 
 
 
For the best performing narrow band index of all vegetation 
indices, cross validated R2 and RMSE between measured and 
estimated LAI were computed. Comparison of R2 and RMSE 
values between different narrow band vegetation indices 
revealed that the narrow band SAVI2 followed by narrow 
band RVI index which were proposed by (Major et al., 1990) 
and (Pearson and Miller, 1972), respectively, seemed to be 
the best overall choices as estimator of LAI. Figure four 
illustrates the relationships between LAI and narrow band 
SAVI2 obtained from linear model. This result is in 
agreement with those of recent study by (Broge and 
Mortensen, 2002) which defined SAVI2 as an best estimator 
for green canopy area index (a derivative variable from LAI). 
 

 
Figure 4. Cross validated, estimated LAI versus measured 
LAI using narrow band SAVI2. 
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The scatter plots between best band combination SAVI2 and 
LAI illustrate their linear relationship (figure 5). Also it is 
evident from the scatter plot that even at relatively high 
values of LAI no saturation has happened. 
 
 

0 1 2 3 4 5 6 7
0

1

2

3

4

5

6

7

8

LAI (cm cm-2)

S
A

V
I2

 (7
27

 n
m

, 1
96

7 
nm

)

 
Figure 5. Relationships between best narrow band SAVI2 
and LAI. 
 
 

4. CONCLUSIONS 

The study has investigated the relationship between LAI and 
narrow band spectral indices, based on a laboratory 
experiment. Two types of narrow band vegetation indices, 
namely ratio based and soil based were compared for 
estimation of LAI. The following conclusions were drawn 
from this study: 
-Vegetation LAI was estimated with a good accuracy from 
red/ near infrared based narrow band indices. 
-Narrow band SAVI2 based on wavelengths in near infrared 
and SWIR was performed as the best index, for estimation of 
LAI.  
-Spectral channels in the SWIR regions are important as well 
as those in the near infrared for predicting LAI. 
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