EARTH SCIENCES SECTOR

Satellite Photogrammetry / Radargrammetry with High Resolution Images for Topographic Mapping and Updating

> Canada Centre for Remote Sensing Gordon Staples MDA Corporations

CANADA'S NATURAL RESOURCES: NOW AND FOR THE FUTURE WWW.nrcan.gc.ca

Natural Resources Ressources naturelles Canada Canada

Launch of collaborators

- Or. Manuel Baltsavias & Armin Grün, ETH Zürich, Switzerland
- Or. Pierre-Jean Alasset, Frédéric Happi Mangoua, Daniel Clavet Natural Resources Canada
- 😚 Dr. David Holland, Ordnance Survey, UK
- Or. Karsten Jacobsen, Leibniz University of Hannover Germany
- 😚 Rani Hellerman, ImageSat In<mark>tl., Israel</mark>

Copyright of Lockheed Martin

Athena 2

Tutorial Summary

Introduction

😚 High-spatial resolution sensors 🖻

Geometric issues
 Radiometric issues
 3D topographic mapping
 Map updating

😚 Radarsat-2 with MDA

Stereo Radarsat-2 UF mode with PCI OrthoEngineSE

Photogrammetry and radargrammetry

- 1. Satellite photogrammetry/radargrammetry consists of the theory and techniques of photogrammetry/radargrammetry where the sensor is carried on a spacecraft and the sensor's output (in the form of images usually) is utilized for the determination of coordinates of the planet being investigated (*Light et al., 1980*).
- 2. Satellite photogrammetry/radargrammetry is thus characterized by the fact the *geometry* is of major interest and the *nature* of the object imaged is of minor interest. On the other hand, remote sensing and its applications are mainly interested in the nature of the object imaged.
- 3. Satellite photogrammetry/radargrammetry, in turn, can be divided into two sub-categories:
 - Planimetry (2D) in which only the horizontal geometry of the object is investigated,
 - Topography (3D) in which the three dimensions of the object are investigated.

High spatial resolution satellite sensors

- 1. For a long time spaceborne remote sensing, especially fine at spatial resolutions, remained in the military domain (*Aplin et al. 1997*).
- 2. In 1986, a breakthrough was realized with the launch of first French satellite SPOT carrying sensors with spatial resolution as fine as 10 m.
- 3. Later on to re-enforce the presumed US leadership in civil satellites, the US Land Remote Sensing Policy Act of 1992 allowed the commercialization of satellites carrying up to 1m resolution sensors, and subsequently IKONOS, the first civilian satellite (0.81m resolution), was launched in September 1999.
- 4. Because a little less than twenty civilian satellites have been now launched within 0.5—10 m resolution range, a better distinction between these sensors is required:
 - Fine spatial resolution (FSR) for 1—10 m
 - Very fine spatial resolution (VFSR) for 1 m and below

3D topographic mapping and map updating

- Large scale topographic data (1:1 250, 1:2 500, 1:10 000) 1
- Small scale (tourist) mapping (1:50 000 and 1:25 000) 2.
- 3. Change intelligence
- Identifying areas of change 4.

Two aspects to be addressed: Accuracy (horizontal, elevation) Information content Standard, specs & context

Natural Resources Canada Canada

Ressources naturelles

3D topographic mapping and map updating

Not all maps are the same...Swiss and British 1:25 000 maps: no standardization
 No standardization in the methods and algorithms: different processes and tools should be developed depending on information content, standard, context, specification... for each country

Natural ResourcesRessources naturellesCanadaCanada

High-spatial resolution satellite sensors

1. Orbital considerations

- 2. Push-broom scanners: some generalities
- 3. Existing HSR/VHSR sensors and examples (SPOT-5, EROS-A/B, Ikonos, QuickBird)
- 4. SAR systems and examples (Radarsat-2, Terra-SAR-X)
- 5. Geometric and radiometric comparisons
- 6. Stereo acquisition

Orbital considerations

Satellite is not an UFO!

Telecommunication satellites follow geostationary, far-Earth, equatorial orbit.

It follows celestial mechanic laws: an osculatory elliptic movement

Remote sensing satellites follow: • near-Earth orbit (>300km altitude) • retrograde orbit (90-180° inclination) • helio-synchronous (same illumination) • geosynchronous (repeating track) • quasi-circular (small eccentricity) • quasi-polar orbit (crossing poles)

http://spaceplace.jpl.nasa.gov/goes/goes_poes_orbits.htm http://physics.nad.ru/Physics/English/sat_txt.htm

Because the valid comparison of images of a given location **acquired on different dates** depends on the similarity of the illumination conditions, the orbital plane must also form a constant angle relative to the sun direction.

This is achieved by ensuring that the satellite flies over any given point at the same local time, which procures a helio-synchronous orbit.

Natural ResourcesRessources naturellesCanadaCanada

Orbital considerations

Canada

Helio-synchronous orbits

Canada

Natural Resources Ressources naturelles Canada

High-spatial resolution satellite sensors

1. Orbital considerations

2. Push-broom scanners: some generalities

- 3. Existing HSR/VHSR sensors and examples (SPOT-5, EROS-A/B, Ikonos, QuickBird)
- 4. SAR systems and examples (Radarsat-2, Terra-SAR-X)
- 5. Geometric and radiometric comparisons
- 6. Stereo acquisition

Push-broom scanners

Push-broom scanner is a sensor formed with "aligned" charge coupled devices (CCD)

The second scan direction is generated by the movement of the platform

Agile scanner can point in any direction

Other scanner can only point in one direction:

- nadir (Landsat);
- across-track (SPOT5, IRS);
- along-track (SPOT5, ALOS)

Push-broom scanners: IRS-1C/D

Description of IRS-1 focal plane using 3 CCDs for covering larger swath

Natural Resources Ressources naturelles Canada Canada

Agile push-broom scanners

Transfer delay and integration (TDI)

Butted CCDs

Flexible view direction &

Forward and reverse scanning

Staggered CCDs

Canada

Two CCD arrays with 50% over-sampling

Natural Resources **Ressources naturelles** Canada

Agile push-broom scanners

Combining Staggered & Butted & TDI CCDs in the focal plane to increase the imaging capability requires a preprocessing to generate an "ideal focal plane"

Natural ResourcesRessources naturellesCanadaCanada

High-spatial resolution satellite sensors

- 1. Orbital considerations
- 2. Push-broom scanners: some generalities
- 3. Existing HSR/VHSR sensors and examples (SPOT-5, EROS-A/B, Ikonos, QuickBird)
- 4. SAR systems and examples (Radarsat-2, Terra-SAR-X)
- 5. Geometric and radiometric comparisons
- 6. Stereo acquisition

Agile & push-broom scanners

Platform Sensor	Country Year	Height (km) / Inclination (°)	GSD (m) / Nb of CCDs	MB / GSD (m)	FOV (°) / Swath (km)	Field of regard (°)	Revisit time (days)	Stereo B/H	Nb. of bits
IRS-1C/1D PAN	India 1995/97	817/98.6	5.8/12,288	None	4.9/70	±26 across	5	Across Up to 1	6
IKONOS-2 OSA/TDI	USA 09/1999	680/98.2	0.84/13,816	4/4	0.93/11	45 ^A (at 360°)	2—3.5	Agile Variable	11
Kompsat-1 EOC	Korea 12/1999	685/98.13	6.6/2,592	None	1.4/17	±45 ^c across	3	Across Up to 1.1	8
EROS A1 PIC/TDI	Israel 12/2000	480/97.4	1.8 [₿] /7,800	None	1.5/13 [₿]	45 (at 360°)	2—4	Agile Variable	11
QuickBird-2 BHRC60/TDI	USA 10/2001	450/52	0.61/27,568	4/2.44	2.12/16	45 (at 360°)	1—3	Agile Variable	11
SPOT-5 HRG	France 05/2002	822/98.7	(5/3.5)/ 12,000 ^D	4/10	4.2/60	±27 across	3—6	Across Up to 1	8
Orbview-3 OHRIS	USA 06/2003	470/97	1/8,000	4/4	0.97/8	50 (at 360°)	1-3	Agile Variable	11
Formosat-2 RSI/TDI	Taiwan 05/2004	891/99.14	2/12,000	4/8	1.5/24	45 (at 360°)	1	Agile Variable	8
Cartosat-1 PAN (2)	India 05/2005	618/97.87	2.5/12,288	None	2.16/30	±26 across	5	Along 0.62	10
Beijing-1 CMT	China 10/2005	686/98.2	4/(6 000)	None	2/24	±30 across	4	Across Up to 1.1	8
TopSat AOC/TDI	UK 10/2005	686/98.2	2.5/6,000	3/5	1.2/15	±30 across	4	Across Up to 1.1	11
ALOS PRISM (3)	Japan 01/2006	692/98.16	2.5/14,000	None	2/35	±1.5 across	46	Along 0.5/1.0	8
EROS B PIC-2/TDI	Israel 04/2006	~500/97.4	0.7/20,000	None	0.8/14	45 (at 360°)	1—3	Agile Variable	10
Kompsat-2 MSC	Korea 07/2006	685/98.13	1/15,000	4/4	1.3/15	30 along 56 across	2	Agile Variable	10
Cartosat-2 PAN	India 01/2007	635/97.92	0.8/12,000	None	0.59/9.6	45 (at 360°)	1-4	Agile Variable	10
WorldView-1 PAN/TDI	USA 09/2007	496/97.2	0.5/35,000	8/2	2.12/17.6	45 (at 360°)	2-6	Agile Variable	11
CBERS-2B HRC	China- Brazil 11/2007	778/98.5	2.5/10,368	None	2.1/27	Few	5	Along Up to 1	8

Agile & push-broom scanners

sensor	country	GSD (nadir)	swath	pointing in-track	pointing across
		[m]	[km]		
SPOT 5	France	5 (2.5) / 10	60		+/-27°
SPOT 5 HRS	France	5 x 10	120	+20°, -20°	-
IRS-1C/1D	India	5.8 / 23.5	70 / 142	.=1	+/-26°
Resourcesat	India	- / 5.8	70	-	+/- 26°
KOMPSAT	S. Korea	6.6	17	-	+/-45°
IKONOS	USA	0.82/3.2	11.3	free view direction	
EROS A	Israel	1.8	12.6	free view direction	
QuickBird	USA	0.61 / 2.44	16.4	free view direction	
EROS B	Israel	0.7	14	free view direction	
FORMOSAT 2	Taiwan	2/8	24	free view direction	
IRS-P5	India	2.5	30	26° fore, 5° after	free view to side
Cartosat-1					
TopSat	UK	2.5 / 5	15 / 10	free view direction	
Beijing-1	China	4 / 32	/ 600	free view direction	
ALOS	Japan	2.5	35 (70)	-24°, 0°, +24°	free view to side
KOMPSAT-2	S. Korea	1/4	15	free view direction	
Resource DK1	Russia	1/3	28	free view direction	
IRS Cartosat-2	India	<1	9.6	free view direction	
WorldView-1	USA	0.45	15.8	free view direction	
CBERS-2B	China/Brasil	2.5 / 20	27 / 120	free view direction	
IRS Cartosat-2A	India	1	10	free view direction	

Agile and push-broom scanners

Less than 20 optical satellites and three SAR are available for mapping application: first with Ikonos in 2000, and now 6 civilian or dual use VHSR sensors and more will follow soon

CNES- SPOT-5

Launched in 2002 by French Ariane-4 rocket

B000kg; 3.1 x 3.1 x 5.7 m; 5 years lifetime

🚱 820 km, 97.2° inclination

SPOT 5 Launch and Early Orbit Phase

Natural Resources

Canada

HRG instrument: ±27° across-track viewing

Panchromatic (2.5 m); 24 000 pixels and multiband (10 m); 6 000 pixels

HRS instrument: ±22° in-track viewing

Panchromatic (10 m by 5 m); 12 000 pixels

HRG

e.fr/home/system/introsat/orbit/welcome.htm

120

(20 km

FOV of ±4°, 120 km by 60 km

Orbite satellite

Natural Resources F Canada C

Ressources naturelles Canada

http://ww

CNES. 2003 SPOT

Natural Resources Canada

ImageSat Intl.- EROS-A

Control Con

- 250kg; 3.1 x 3.1 x 5.7 m; 7 years lifetime
- ♦ 480 km, 97.3° inclination

CCD agile asynchronous instrument: 45° viewing in any direction

Panchromatic (1.8 m); 7000 pixels

FOV of ±1.8°, 13.5 by 13.5 km

Canada

latural Resources Ressources naturelles Canada

Copyright of Lockheed Martin

EROS 1A

EROS-A Satellite

... is too fast

EROS-A Satellite

The ground satellite velocity is much higher than the ground scanning velocity. The satellite attitude pitch has to compensate for this variation during the image acquisition.

http://www.imagesatintl.com/customersupport/techarticles/Tutorial_S atelliteImaging_Non-synchronousMode.pdf

Natural Resources

Canada

EROS-A Satellite

EROS is thus continuously pitching backward and yawing during the image acquisition

Scanning	Resolution (metre)				
Angle, (Deg.)	Along Scanning	Cross Scanning			
0	1.80	1.80			
5	1.81	1.81			
10	1.83	1.86			
15	1.86	1.93			
20	1.92	2.04			
25	1.99	2.19			
30	2.08	2.40			
35	2.20	2.68			
40	2.35	3.07			
45	2.55	3.60			

Natural Resources Canada

Ressources naturelles Canada http://www.apogee.com.au/images/satellites_nimble_anim.gif

EROS Attitude

la

Canada

Natural Resources Ressources naturelles Canada

EROS-A Image Tokyo Downtown Aft image (25°)

> Effect of the great viewing angle (more than 45°)

> > Canada

EROS-B Image La Habana

Canada

Ressources naturelles Canada

EROS-B © 2008 ImageSat International N.V

EROS-B Image La Habana Vieja

EROS-B © 2008 ImageSat International N.V

Space Imaging-IKONOS

🚱 Launched in 1999 by Athena <u>6 rocket</u>

🚱 820kg; 1.8 x 1.8 x 1.6 m; 7 years lifetime

🚱 680 km, 98.1° inclination

CCD agile instrument: 60° viewing in any direction

Panchromatic (0.82 m up to 30°; 10 000 pixels) and multiband (3.26 m up to 30°; 2500 pixels)

FOV of ±0.9°, 10 by 10 km

Copyright Space Imaging

IKONOS Image Toronto Industrial area

IKONOS Image Beauport

Image size: 2 km x 2 km

SATELLITE

Satellite owned by NSPO (Taiwanese Space agency)

Space segment manufactured by EADS/ASTRIUM

NSPO has appointed Spot Image as exclusive worldwide distributor

A SPECIFIC ORBIT

891 km: sun-synchronous & geo-synchronous

14 orbit per day

Daily revisit for accessible areas, always under the same roll angle

9h30 am Local Time at descending node

CHARACTERISTICS

2-m pan / 8-m colors@ Nadir
Swath @ NADIR: 24 km
4 spectral bands (R.V.A., PIR)
On board memory: 40 Gbit
High agility: stereo along the track and fast roll
More than 8 minutes imaging per orbit

Formosat-2 RSI

Remote Sensing Instrument

- Earth observation optical camera, which simultaneously provides high-resolution panchromatic imagery and multi-band imagery
- Single focal plane with four CCDs
- Stereo is obtained by pitching the sensor

Multi-band + panchromatic	450 ~ 900 nm
Sensor Resolution	2 m (panchromatic) 8 m (multi-band)
Image Swath	24 km
Stereo	along-track (B/H \approx 1)

Specular reflection on water bodies

Natural Resources Canada

Ressources naturelles Canada

Copyright 2008 NSPO, Taiwan

Formosat-2

Quebec, Canada

Canada

Natural Resources Ressources naturelles Canada

Satellite

Satellite belonging to KARI (Korean Space Agency)

Space segment developed by KARI with support from : KAI, Korean Air; **ASTRIUM** (platform and system support); ElOp (instrument) Launched in July 2006

Orbit

685 km: sun-synchronous

3 days revisit with angle 30° (every day with angle of 56°)

10:30am Local Time at ascending mode

Technical features

1m pan / 4m colors(1m pan-sharpened) 10 bits Swath @ NADIR: 15 km Off track viewing up to 30° **On board memory: 64 Gbit**

Canada

Digital Globe-QuickBird

😚 Launched in 2001 by Boeing Delta II rocket

- 😚 HRG instrument: ±27° agile viewing
 - Panchromatic (0.6 m; 27 550 pixels) and multiband (2.4 m; 6 900 pixels)

Image acquisition is discontinuous in the cross-track-direction (pixel)direction

6 butted/staggered pan arrays with 32 TDI stages each

6 butted/staggered XS arrays with four linear arrays each

QuickBird Images

- A Sand pits B Lakes
- B Lakes
- C Bare soils
- D Power corridors
- E Ski station

A: Shadows of trees or houses; B: Snow-frozen lake; C: Mobile homes; D: 2-storey residential houses

Natural Resources Re Canada Ca

QuickBird Image Texas

0.61 m pixel spacing

0.10 m pixel spacing

The first digital frame cameras DK-1 were launched 15 June 2006 for a three-year mission on the newest member of Russia RESURS satellite fleet.

Specifications CCD "Kruiz" chip of 9 x 9 μm 1024 pixel by 128 lines Four arrays with 36 CCD "Kruiz" chips and 128 horizontal TDI rows each Pan: (580—800 nm) 1 m GSD, VNIR: (green 520—600 nm, red 600—700 nm, NIR 700—800 nm), 2—3-m GSD 28.3 km swath and 40 km at 30° up to 105,000 km2 imaging capacity daily. body-pointing capability of ±30° across-track 448 km field of regard 360—690 km altitude extensive on-board memory, high-speed real-time downlink system GLObal Navigation Satellite System (GLONASS).

Concepcion, Chile

The first digital frame cameras DK-1 were launched 15 June 2006 for a three-year mission on the newest member of Russia RESURS satellite fleet. Spatial resolution is below 1 m but images are sampled at 1 m.

Santa Catarina, Brazil

Natural Resources Canada

Ressources naturelles Canada

Jiddah, Saudi Arabia

Characteristics

2 satellites (P1 + P2) Manufactured by EADS/ASTRIUM & Alcate Resolution: 50 cm Pan + 2m XS GSD (16 bits) Swath @ NADIR : 20 km Localization (without GCP): 12 m @ 90% Daily revisit (when 2 satellite and 45° angle) Up to 450 images/day (20 km x 20 km) On board memory (250 images) Very high agility : Control Moment Gyros (4) Launch (2010 + 2011)

Astroterra

Providing *continuity* to the Spot 5 mission, funded by Spot Image and EADS Astrium: will be the future SPOT 6 and SPOT7

System based on agile mini-satellite (400 kg class) 2 instruments, 4 multispectral bands (blue, green, red, NIR) Resolution: < 2m B&W; 8 m Colour Swath: 60km Altitude: 700 km Extreme agility (CMG) Acquisition capacity: > 2,5 Million km²/day (similar to SPOT 5) Stereo capability: along track; and 3-stereo System Architecture & Design held with ASTRIUM & CNES Launch date: end 2011

life time: 7 years

High-spatial resolution satellite sensors

- 1. Orbital considerations
- 2. Push-broom scanners: some generalities
- 3. Existing HSR/VHSR sensors and examples (SPOT-5, EROS-A/B, Ikonos, QuickBird)

4. SAR systems and examples (Radarsat-2, Terra-SAR-X)

- 5. Geometric and radiometric comparisons
- 6. Stereo acquisition

Ascending and descending acquisition

Basic geometry of SAR image acquisition

Azimuth

Slant versus ground range

Slant range

Ground range

SAR systems

The specific geometry of SAR image:

F = foreshortening; L = layover; S = shadow

Foreshortening and layover are most severe for small incidence angles.

Shadow is most severe for large incidence angles.

X-band

2.4 - 3,75cm

reflection close to top surface

C-band

3.75 – 7.5 cm

reflection close to top

L-band 15 – 30cm

close to

dense conifers ~ 6m above ground young trees ~ surface clear cut – penetration of mud ~0.5m

Natural Resources Ressources Canada Canada

RADARSAT OPERATING MODES

Canada

Natural Resources Canada

Ressources naturelles

Beauport, Quebec

"RADARSAT-2 Products © MacDONALD, DETTWILER AND ASSOCIATES LTD. (2008)

RADARSAT2 ultra-fine mode image 3 by 3 m resolution 30° viewing angle descending orbit right viewing ground range

- All Rights Reserved"

Ghosts of Backscatter

Cardinal effects due to strong double bounce backscatter with streets aligned in range

Natural Resources Canada

Ressources naturelles Canada

(2008) – All Rights Reserved"

ATES I TD

TerraSAR-X is a German satellite that uses an X-band SAR to provide high-quality topographic information for commercial and scientific applications.

Launched June 15 2007 aboard a Dnepr rocket from Baikonur, it produced preliminary imagery on June 19 2007. TerraSAR-X has a **revisit interval of 11 days**. However, its ability to view on either side of the ground track means it sees any point on the globe at least every 4½ days, and every 2 days in 90% of cases.

TerraSAR-X

TerraSAR-X with the twin Tandem-X, to be launched in 2009, will provide interferometric data for accurate DEM generation. It is the first commercial 1-m resolution SAR satellite

Open mine of copper resolution: 3 metres (reduced image); mode: StripMap mode; polarisation: VV and HH

Credit: DLR; date: July 1, 2007, 23:00 UTC; original resolution: 1 metre (reduced image); mode: High Resolution Spotlight Mode, polarisation: HH.

COSMO-SkyMed (Constellation of Small Satellites for Mediterranean basin observation) 1S an Earth observation program of the Italian Space Agency (ASI) developed by Alenia Spazio. Three were already launched in 2007-08.

The four satellites are at 620 km and phased at 90°, which gives a revisit time of less than 12 hours. The field of regard is 1300 km with left/right 20-60° viewing angles. SAR sensor has multi-pol and interferometric capability.

Canada

ral Resources Ressources naturelles ada Canada

The HR modes are: **Spotlight**: single pol, 1-m resolution, 10x10 km **Himage**: single pol, 3-m resolution, 30x30 km

Chuquicamata, Chile

Natural Resources

Canada

Maracaibo Lake, Venezuela

High-spatial resolution satellite sensors

- 1. Orbital considerations
- 2. Push-broom scanners: some generalities
- 3. Existing HSR/VHSR sensors and examples (SPOT-5, EROS-A/B, Ikonos, QuickBird)
- 4. SAR systems and examples (Radarsat-2, Terra-SAR-X)
- 5. Geometric and radiometric comparisons
- 6. Stereo acquisition

For push-broom scanner SPOT-5 has the largest swath.

In addition, the acquisition is continuous, which enables long strip to be generated.

Image sizes SPOT-5 versus IKONOS

<u>da</u>

171

SPOT © 2002 CNES

36 IKONOS for 1 SPOT-5

Natural Resources Canada

FSR data acquired over the test field Zonguldak (*Jacobsen et al.*) Small increase in sensor resolution does not improve feature characterization: radiometry should also be considered

Canada

Natural Resources Ressources naturelles Canada

Natural Resources Canada

Geometry and Radiometry

←OrbView 3 IKONOS → both 1m GSD

QuickBird 0.62m GSD

> SPOT 5 → 5m GSD

Canada

Natural Resources Canada

Ressources naturelles

Radarsat-2 UF25 HH 3-m resolution

Radarsat-2 FQ18 HH 5-8-m resolution

Canada

"RADARSAT-2 Products © MacDONALD, DETTWILER AND ASSOCIATES LTD. (2008) – All Rights Reserved"

Same coverage, same geometry, same polarization, single look

different geometric resolution and cartographic features

Geometry & Radiometry: Pan vs XS QuickBird P: 0.6 m pixel XS: 2.4 m pixel

> IKONOS P: 1 m pixel XS: 4 m pixel

Natural Resources Canada

"RADARSAT-2 Products © MacDONALD, DETTWILER AND ASSOCIATES LTD. (2008) - All Rights Reserved"

Same coverage, same geometric, single look and different radiometric resolution

Canada

Natural Resources **Ressources naturelles** Canada

Canada

Radiometry

Optical image based on chemical characteristics, radar images based on physical characteristics (cf. Jacobsen)

Aerial color photo

TerraSAR- X

- In rural areas information contents on similar level, but different contents.
- Electrical poles are well identifiable in SAR.

High-spatial resolution satellite sensors

- 1. Orbital considerations
- 2. Push-broom scanners: some generalities
- 3. Existing HSR/VHSR sensors and examples (SPOT-5, EROS-A/B, Ikonos, QuickBird)
- 4. SAR systems and examples (Radarsat-2, Terra-SAR-X)
- 5. Geometric and radiometric comparisons
- 6. Stereo acquisition

Stereoscopy

Satellite image stereo pairs are generated when a satellite collects data with two different viewing angles or two different beam positions of the same area

X parallax, X_a or X_b, known as the stereoscopic parallax, is caused by a shift in the position of observation and is proportional to elevation, h_a or h_b

Advantages of Stereoscopy

Can convey information about slopes, shapes of landforms, and elevations much more clearly than 2-D representation

Useful to extract information: 3-D planimetric and elevation features (DEM)

DSM takes into account the height of natural/artificial surfaces DEM represents the bald Earth

\Rightarrow **DSM** – **DEM** = Heights

Canada

Natural Resources **Ressources naturelles** Canada

Satellite images can be acquired from different view points in space geenraton different stereo viewing geometry

The most accurate stereo-geometry is with B/H of around one

Natural ResourcesRessources naturellesCanadaCanada

In addition, SPOT-5 HRS can also acquire along-track stereo images only for DEM

No temporal variations in radiometry & good geometry

JERS-1 OPS, MOMS, ASTER, Cartosat, SPOT5-HRS

Canada

Other push-broom scanners (SPOT-5 HRG, IRS-1C) can only acquire multidate across-track stereo images

Temporal variations in radiometry & variable geometry

Natural Resources

Canada

Ŷ

Agile satellites (EROS, IKONOS & QuickBird) can acquire same-date stereo images in any direction

No temporal variations in radiometry & good geometry

Canada

Natural Resources **Ressources naturelles** Canada

EROS, Formosat, Kompsat, Ikonos, QuickBird, OrbView, WorldView, GeoEye

Canada

Natural Resources Ressources naturelles Canada

SAR stereo image acquisition: general guidelines for R-1 & R-2

Terrain Relief Slopes	Flat 0° - 10°	Rolling 10° - 30°	Mountainous 30° - 50°
Radiometric Disparities	Small	Medium	Large
Geometric Disparities	Large	Medium	Small
Compromises	Opposite-side with steep look angles	Same-side with large intersection angle <i>or</i> (Opposite-side with shallow look angles)	Same-side with small intersection angle and shallow (or steep) look angles
Stereo RADARSAT Configurations	S1desc-S1asc F1desc-F1asc	S1-S7 (desc or asc) F1-F5 (desc or asc) <i>or</i> S7 desc-S7 asc F5 desc-F5 asc	S1-S4 (desc or asc) F2-F5 (desc or asc) S4-S7 (desc or asc) F1-F4 (desc or asc)

Canada

Natural Resources Canada

Ressources naturelles

September 18, 2003; $\pm 22^{\circ}$, along-track same-date

10m x 5m pixel; 120km x 60 km

Natural Resources Ro Canada Ca

Ressources naturelles Canada No temporal variation with same-date acquisition

Canada

Stereo acquisition: SPOT HRG

May 25, 2003; -19°

across-track multi-date

May 5, 2003; +23°

Natural Resources Canada Ressources naturelles Canada Temporal variation due to multidate acquisition

Stereo acquisition: EROS-A

Agile, same-track, same-date

Effect of the viewing angles difference

As EROS asynchronous satellite generates large pitch variations during imaging time, the pixel/line spacing and image shapes are very different in the images and between the images.

This asynchronous process generates large geometric and radiometric disparities Satellite velocity

Stereo acquisition: EROS-A

Satellite viewing viewing for fore image Tokyo Downtown Stereo images

Natural Resources Canada Ressources naturelles Canada Satellite viewing for aft image

Stereo acquisition: EROS-A

Feature visibility variation

Orientation, distance and shape distortion

View Angle = 37°

Satellite veloc

Pixel spacing: 2.8 m vs 2.2 m Line spacing: 2.3 m vs 2.0 m

Sun

imuth

View Angle = 25°

EROS © 2002 ImageSat

Stereo acquisition: Ikonos

Stereo Ikonos images are directly provide in the quasi-epipolar geometry, where all geometric distortions were corrected, only elevation parallax remains. Consequently geometry and radiometry were transformed and radiometry degraded. Elevation parallaxes are only in the column direction.

Stereo acquisition: Ikonos Beauport

Satellite velocity

Natural Resources Canada Ressources naturelles Canada Satellite viewing for aft image

Stereo acquisition: EROS-B

EROS-B © 2008 ImageSat International N.V

Stereo acquisition: EROS-B

Santiago, Chile

EROS-B © 2008 ImageSat International N.V

Geometric distortions between the two images due to the different viewing angles are more obvious

Stereo Radarsat-2 Ultra-fine mode L: June 30; 31°-32°; 1.56 m U25: July 4; 47°-48°; 1.56 m

"RADARSAT-2 Products © MacDONALD, DETTWILER AND ASSOCIATES LTD. (2008) – All Rights Reserved"

Relief backscattering is predominant

Land cover backscattering is predominant

Natural Resources Ressources naturelles Canada Canada

Radarsat-2 Stereo Images Beauport, Quebec, Canada

"RADARSAT-2 Products © MacDONALD, DETTWILER AND ASSOCIATES LTD. (2008) – All Rights Reserved"

Radarsat-2 ultrafine mode stereo anaglyph (1.5 m spacing) with 1:50,000 contour lines overlaid

Canada

Geometric processing

1. Characterization of geometric distortions

- 2. Geometric corrections: models and algorithms
- 3. Single image processing
- 4. Strip and block processing
- 5. Stereo processing

Remotely sensed images usually contain geometric distortions so significant that they cannot be used directly with map base products in a geographic information system (GIS).

Consequently, multi-source data integration (raster and vector) for cartographic/thematic applications requires geometric and radiometric processing adapted to the nature and characteristics of the data in order to keep the best information from each image in the composite ortho-rectified image.

Although geometric distortions have always been present in remotely sensed images, they have become a more significant problem in recent years.

In 1972, the impact of the distortions was quite negligible for the following reasons:

The images were nadir viewing with coarse resolution (80 m)
The products, resulting from the image processing were analogue on paper

The interpretation of the final products was performed visually
 The fusion and integration of multi-source and multi-format data did not exist

Today, however, the distortions having the same nature are no longer negligible because:

- The images are off-nadir viewing with much finer resolution (sub-meter level)
- The products resulting from image processing are fully digital
- The interpretation of the final products is realised on computer
- The fusion of multi-source images (different platforms and sensors) is in general use
- The integration of multi-format data (raster/vector) is a general tendency in geomatics

Sources of geometric distortions

Geometric distortions vary considerably with the platform and the sensor

However, it is possible to make general categorizations of these distortions, which can be grouped into two broad categories:

The Observer or the acquisition system

Platform (airborne or spaceborne)

- S Imaging sensor (scanning, push-broom, SAR)
- S Measuring instruments (GPS, gyro, stellar sensor)

😙 The Observed

- Atmosphere
- ኝ Earth
- 🚯 Map

Sources of geometric distortions

CATEGORY	SUB-CATEGORY	DESCRIPTION OF ERROR SOURCES	
The Observer	Platform (spaceborne or airborne)	Variation of the movement Variation in platform attitude (low to high frequencies)	R
or The Acquisition	Sensor (VIR, SAR or HR)	Variation in sensor mechanics (scan rate, scanning velocity) Viewing/look angles Panoramic effect with FOV	
System	Measuring instruments	Time-variations or drift Clock synchronicity	
	Atmosphere	Refraction and turbulence	
The Observed	Earth	Curvature, rotation, topographic effect	
	Мар	Geoid to ellipsoid Ellipsoid to map	Curchan

Canada

Natural Resources Canada

PLATFORM

- Altitude variations change the pixel spacing
- Attitude variations (roll, pitch and yaw) change the orientation and the shape of **VIR** images
- Velocity variations change the line spacing or create line gaps/overlaps

SENSOR

Calibration parameter uncertainty such as lens distortions, view and IFOV for VIR sensors or the range gate delay (timing) for SAR sensors

Panoramic distortion in combination with the oblique-viewing system changes the ground pixel sampling along the column

Canada

Ressources naturelles ural Resources Canada

EARTH

- Rotation, which generates latitude-dependent displacements between image lines
- Solution Curvature, which for large width image creates variation in the pixel spacing
- Topographic relief, which generates a parallax in the scanner direction

MAP PROJECTION

S Approximation of the geoid by a reference ellipsoid

Projection of the reference ellipsoid on a tangent plane

Attitude definition

Impact on the ground

Pitch	Roll	Yaw
	\	
	((

Lens distortions: decentering and symmetrical radial:

 $\Delta \mathbf{r} = \Gamma + \Sigma \mathbf{a}_{i} \mathbf{r}_{i}$ [i=1, 3, 5, 7]

Canada

Natural ResourcesReCanadaCa

Ortho-rectification in a specified map projection (a plane parallel to the earth ellipsoid) generates deformations

reference plane

Natural Resources Ressources naturelles Canada Canada

Elevation displacement Optical sensor: shift in view direction

SAR sensor: shift against view direction

Natural Resources Ressour Canada Canada

However, some geometric distortions are correlated:

• The *'orientation' of the image* is a combination of:

- the **platform** heading due to orbital inclination,
- the yaw of the **platform**,
- the convergence of the meridian

• The 'scale factor' in along-track direction is a combination of:

- the velocity and the altitude of the **platform**
- the detection signal time and the in-track viewing angle of the sensor
- the component of the Earth curvature in the along-track direction

•The 'leveling angle' in across-track direction is a combination of:

- the **platform** roll,
- the across-track viewing angle of the sensor,
- the **Earth** curvature
- the map projection

- 1. Characterization of geometric distortions
- 2. Geometric corrections: models and algorithms
- 3. Single image processing
- 4. Strip and block processing
- 5. Stereo processing

What math model can we use to correct them?

2D/3D empirical models ightarrow

> Do not reflect the viewing geometry and distortions Based on statistical regression using GCPs Correct locally at GCPs Need generally numerous and well distributed GCPs

3D physical models igodol

Based on math parametrization of the physic phenomenon Reflect the viewing geometry and distortions Correct globally the full image Need few GCPs

Canada

2D/3D Empirical Models can be used

Geometric	Mathematical Functions*	Number of
Models	P_{2D} , $P_{3D} \propto \kappa_{3D}$	unknown terms
	$\mathbf{p} (\mathbf{Y}\mathbf{Y}) = \sum_{n=1}^{m} \sum_{n=1}^{n} \mathbf{Y}^{i}\mathbf{Y}^{j}$	1^{st} order: $3 + 3$
2D Polynomial	$P_{2D}(\Lambda I) = \sum_{i=0}^{2} \sum_{i=0}^{2} a_{ij} \Lambda I^{*}$	2^{nd} order: 6 + 6
		3^{rd} order: $10 + 10$
	$-(WZ) \sum_{n=1}^{m} \sum_{j=1}^{n} \sum_{j=1}^{p} W_{j} Z_{j}^{j}$	1^{st} order: 4 + 4
3D Polynomial	$P_{3D}(XYZ) = \sum_{i=a} \sum_{j=a} \sum_{i=a} a_{ijk} X^{i}Y^{j}Z^{*}$	2^{nd} order: $10 + 10$
5	<i>i=0 j=0</i>	3^{rd} order: 20 + 20
	$\sum_{n=1}^{m} \sum_{j=1}^{n} \sum_{j=1}^{p} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j$	1^{st} order: $8 + 8$
3D Rational	$\sum_{i=a} \sum_{j=a} \sum_{k=a} a_{ijk} X^{*} Y^{j} Z^{*}$	2^{nd} order: $20 + 20$
	$R_{3D}(XYZ) = \frac{1-c_{J}-b_{K-b}}{m-n-p}$	3^{rd} order: $40 + 40$
	$\sum \sum \sum b_{ijk} X^{'}Y^{J}Z^{k}$	
	i=o j=ok=o	

*X, Y, Z are the cartographic coordinates;

i, j, k are integer increments;

m, n and p are integer values, generally comprised between 1 and 3

m + n + p is the order of the polynomial functions

3D physical models differ depending on the sensor, the platform and its image acquisition geometry:

- The instantaneous acquisition system of digital photogrammetric cameras, such as Resurs-DK1
- **The push-broom scanners**, such as SPOT5-HRG/HRS or Cartosat
- The agile scanners, such as Ikonos or Quickbird
- The synthetic aperture radar (SAR), such as RADARSAT-1/2, TerraSAR-X or Cosmo-SkyMed

3D Physical Models

Mathematical Equations

$$= -f \frac{m_{11} (X - X_0) + m_{12} (Y - Y_0) + m_{13} (Z - Z_0)}{m_{31} (X - X_0) + m_{32} (Y - Y_0) + m_{33} (Z - Z_0)}$$

= -f $\frac{m_{21} (X - X_0) + m_{22} (Y - Y_0) + m_{23} (Z - Z_0)}{m_{31} (X - X_0) + m_{32} (Y - Y_0) + m_{33} (Z - Z_0)}$

Description of Parameters

x,y: image coordinates X,Y,Z: map coordinates $X_{0,}Y_{0,}Z_{0}$ projection centre coordinates -f: focal length of the VIR sensor m_{ij} : elements of orthogonal 3-rotation matrix

VIR Images Collinearity Equations

SAR

Images

Doppler-range

Equations

f: Doppler value r: range distance S and Vs: sensor position and velocity P and VP: target-point position and ground velocity λ: radar wavelength

Canada

Natural Resources Ressources Canada Canada

Different 3D Physical SAR Models developed and used

Mathematical Equations	Institutions	Advantages	Disadvantages
Doppler-Time	IGN, DLR	Physically precise	Mathematical approximation
	VEXCEI, ISTAK	rew GCF3 (1-2)	NOT USERS-ITTETION
Radargrammetric	Graz U.,	Photogrammetric derived	Mathematical approximation
	Hannover U.	Physically precise	More GCPs (4-6)
	Intermap	User-friendly	
Generalized	IGN, CCRS	Mathematically precise	Physical approximation
	(Graz U.),	Unified and integrated	More GCPs (4-6)
	(Hannover U.)	User-friendly	

Star sensors – for update of gyros

Geometric corrections: models

Direct sensor orientation

Satellites equipped with:

- GPS or DORIS (for positioning)
- Gyros/IMU (for attitude),
- Star sensors (for attitude variations)

→Direct sensor orientation = determination of orientation without control points.

It achieved standard deviation of one to few pixels and potential problems with national datum

> Discrepancies of direct sensor orientation of Ikonos (from Gene Dial, GeoEye)

Star sensors – for update of gyros

Indirect sensor orientation

Satellites equipped with:

- GPS or DORIS (for positioning)
- Gyros/IMU (for attitude),
- Star sensors (for attitude variations)

→ Indirect sensor orientation = approximation of the math model with metadata + accurate determination of orientation using control points and iterative least-squares adjustment.

It achieves modeling accuracy of one pixel or less

- 1. Characterization of geometric distortions
- 2. Geometric corrections: models and algorithms
- 3. Single image processing
- 4. Strip and block processing
- 5. Stereo processing

atural Resources

Canada

Canada

Raw images with only normalization and calibration of the detectors (e.g. level 1A) for SPOT5 or 1B for QuickBird-2) without any geometric correction are satellite-track oriented.

In addition, full metadata related to sensor, satellite (ephemeris and attitude) and image are provided. Generation of image segment can be performed for the spatio-triangulation.

> Geo-referenced images (e.g. level 1B for SPOT5 or Geo for Ikonos) corrected for systematic distortions due to the sensor, the platform and Earth rotation/curvature are satellite-track oriented.

Generally, few metadata related to sensor and satellite are provided; some of metadata are related to the 1B processing.

> Map-oriented images, also called geocoded images, (e.g. level 2A for SPOT or Cartera Geo for Ikonos) corrected for the same distortions as geo-referenced images are North oriented.

Generally, very few metadata related to sensor and satellite are provided; most of metadata are related to the 2A processing and the ellipsoid/map characteristics

Canada

Ressources naturelles Vatural Resources Canada

Slant range images with only SAR calibration (e.g. SLC for Radarsat-1/2) without any geometric correction are satellite-track oriented.

In addition, full metadata related to sensor, satellite (ephemeris and attitude) and image are provided. Generation of image segment can be performed for the spatio-triangulation.

> Ground range images (e.g. SGF or SGX for Radarsat-1/2) corrected for systematic distortions due to the sensor, the platform and Earth rotation/curvature are satellitetrack oriented

Generally, few metadata related to sensor and satellite are provided; some of metadata are related to the ground range processing.

Map-oriented images, also called geocoded images, (e.g. level 2A for SPOT or Cartera Geo for IKONOS) corrected for the same distortions as geo-referenced images are North oriented.

Generally, very few metadata related to sensor and satellite are provided; most of metadata are related to the 2A processing and the ellipsoid/map characteristics

Canada

Ressources naturelles latural Resources Canada

	System	Raw data without any correction; orbit oriented	Radiometric correction; orbit oriented	Radiometric & geometric corrections; orbit oriented	Radiometric & geometric corrections; map oriented	Radiometric& geometric corrections with control data; map oriented	Radiometric & geometric corrections with control data & DTM; map oriented
No. Company	SPOT1—5	0A	1A	1B	2A	2B	3
Level of	IRS1C/D		1A	1B	2A		3
processing	lkonos-2				Geo Standard	Reference Pro	Precision Precision Plus
not	EROS A		1A	1B			Special request
available to general	Kompsat-1	1A	1R	1GR		1GC.P	1GC.D
users	QuickBird-2		Basic	Standard			Ortho DG/DOQQ
	OrbView-3		Basic				Ortho
Level of processing	Formosat-2		1A	1B			3
useful for	Cartosat-1	0A	0B	1SYS		2GCP	3A/B DEMA/B
GC	Topsat	0	1A		2A	2B	3
T 1 0	ALOS	1A	1B1	1B2	1B2		
Level of processing	EROS B		1A	1B			Special request
useless for	Kompsat-2		1A	1B	2A		3
GC	Cartosat-2				User request		Precision/High-Precision
	WorldView-1		Basic	Standard			Ortho DG/DOQQ
Natural Reso Canada	urces Res Car	ssources naturel nada	les				Canad

Sensor acquires data in continuous paths but images are "artificially" cut in squares: segment of images has to be used Due to cloud cover there is some restriction in the segment length with VIR images

Block is thus formed with adjacent strips from different orbits in the East/West direction

GCPs are then selected in the block and tie points (TPs) link adjacent images and/or strips

Canada

Image segment and block generation

RADARSAT-1 (200x150km)

Canada

RADARSAT-1 Products © 2000 Canadian Space Agency; Distributed by MacDonald, Dettwiler & Associates LTD

Natural Resources

Canada

GCP collection method function of image resolution and final accuracy

Canada

3-m Radarsat-2 fine mode: road intersection; lakes

Canada

Largest error will arise from GCP positioning in SAR image:1-2 pixel

¢

GCP with 2-m accurate positioning on ortho-photo is good enough with FQ Radarsat-2 but not for UF and SpotLight: DGPS is required

Canada

Natural Resources Canada

Ressources naturelles

© 2000 Ressources naturelles Québec, Canada

20k aerial photo (1 m spacing)

QuickBird

20k aerial photo

GCP with 2-m accurate positioning is not enough with VFSR QuickBirb

QuickBird © 2001 DigitalGlobe

Natural Resources Canada Ressources naturelles Canada

© 2000 Ressources naturelles Québec, Canada

QuickBird © 2002 DigitalGlobe

Pole or pole shadow used as GCP for VFSR VIR or SAR Better than 1 pixel accuracy

Radarsat-2 ultra-fine mode (HH; 3-m resolution; 1.56-m spacing)

Geometric processing:

A posteriori collection

QuickBird

A priori collection

Canao

Da

QuickBird © 2001 DigitalGlobe

Natural Resources Canada

Control points should be symmetric targets using special tools for pointing

Ikonos

Corner positions \rightarrow shift from bright to dark

Artificial targeting

Natural Resources Canada

Least-square bundle adjustment is used to computed the math model. All bundles (of rays) in the image are simultaneously adjusted (relative plus absolute orientations). The basic unit is a pair of image coordinates for the bundle.

Image Type	Examples of Images	Geometric Models
Raw level	QuickBird Basic EROS-A Basic 1A SPOT-5 1A	3D physical 3D 2 nd /3 rd -order rational
Georeferenced	SPOT-5 1B EROS-A 1B	3D physical 3D 1 st /2 nd -order polynomial 3D 1 st /2 nd -order rational
Map-Oriented	QuickBird Standard IKONOS Geo SPOT-5 2A	 3D physical 3D 1st-order polynomial 3D 1st-order rational

Canada

Ressources naturelles atural Resources Canada

observed landscape

map needs:

A geometric operation to project the image. A digital elevation model must be used for higher accuracy

Natural Resources Resso Canada Canad

Geometric corrections: algorithms

1-m accuracy requires 2-m accurate DSM with 30° viewing angle

5-m accurate DSM requires 10° viewing angle for 1-m accuracy

Ortho-rectification (2/2)

Secondly, the process "to project" the image on the ground to be registered to a map needs:

> A radiometric operation to compute the grey value in the rectified image. Different resampling kernels can be used.

Natural ResourcesRessources naturellesCanadaCanada

A: nearest neighbour B: bilinear (2x2 window) C: cubic convolution (3x3 window) D: sinx/x (16x16 window) E: enhanced Lee adaptive filter F: Gamma adaptive filter

GC: algorithms

Resampling

Change from nearest neighbor to cubic convolution resampling moves apparent corner position by 0.25 pixels

from Gene Dial (GeoEye)

- 1. Characterization of geometric distortions
- 2. Geometric corrections: models and **algorithms**
- 3. Single image processing
- 4. Strip and block processing
- 5. Stereo processing

Geometric corrections: single image

Processing steps

a

Lens distortions: symmetrical and asymmetrical radial $\Delta \mathbf{r} = \Sigma \mathbf{a}_{i} \mathbf{r}_{i}$ [i=1, 6]

Before corrections: a systematic and random components After corrections: only a random component

Natural Resources Ressource Canada Canada

Bundle adjustment (Hannover Uni. Dr. Jacobsen)

Results with QuickBird

Results with Ikonos

GCPs have sub-pixel accuracy

Canada

Natural Resources Ressources naturelles Canada

Accuracy versus number of GCPs used in bundle adjustment

10 GCPs with 1-m accuracy
15 GCPs with 3-m accuracy
20 GCPs with 5-m accuracy
30 GCPs with 10-m accuracy

Study	GCP	ICP	RMS Errors		Min./Max Errors	
Site	Number	Number	X	Y	X	Y
Ottawa						
QuickBird	10	28	0.8	0.8	-2/2	-2/2
QuickBird	15	38	1.6	1.4	-2/2	-7/3
QuickBird	20	38	4.2	2.6	-15/1	0/9
QuickBird	30	38	3.2	4.5	-3/11	-9/11

Messages (Dr. Armin Gruen, ETH Zurich)
 (1) Subpixel accuracy georeferencing is a solved problem
 (2) Bias-corrected RPCs & rigorous collinearity-based models with same results

Evaluation of ortho-image with orthophotos: checked data are not always the best ! Ortho-IKONOS with 1:20000 vector lines

Ortho-photo with 1:20000 vector lines

Absolute accuracy: about 1 m

Natural Resources R Canada C

Germany

Ortho-IKONOS with 1:20000 vector lines

Absolute accuracy:about 1 m

Original IKONOS Image
Space Imaging LLC 2(

Canaua

Stereo processing: bundle results

Examples with Radarsat-2 Ultra-fine/Spotlight modes

Results (in metres) over ICPs from the adjustment computed with only one GCP

Image(s)	ICP	RMSE-X	RMSE-Y	RMSE-Z	Max X	Max Y	Max Z
U2 HH	88	4.5	1.5		8.9	3.7	
U25 HH	113	45.6	5.9		81.7	10.9	
SLA24 HH	19	1.9	1.2		4.2	2.7	

Error in U25 metadata (corrected since Fall 2008)

Results (in metres) over ICPs from the adjustment computed with 8 GCPs

Image(s)	ICP	RMSE-X	RMSE-Y	RMSE-Z	Max X	Max Y	Max Z
U2 HH	81	1.5	1.4		3.9	3.4	
U25 HH	105	1.4	1.3		4.2	3.2	

Natural Resources Ressour Canada Canada

Geometric processing: single image

Comparison of ortho Radarsat-2 UF (1-m spacing) with 20k map

No more than 1-2 pixel differences (1-2 m) between the ortho-image and map: Part of this error is **due** to the map

Natural Resources Canada

LER AND

Geometric processing: single image

Comparison of ortho Radarsat-2 UF (1-m spacing) with 1-m accurate orthophoto

No more than 1 pixel differences between the ortho-image and orthophoto: Part of this error is due to the ortho-photo

"RADARSAT-2 Products © MacDONALD, DETTWILER AND

→ Cartographic error propagation

Definition and pointing with better than 1-m accuracy

lana

a

QuickBird images © Digital Globe 2002

Natural Resources Canada

With 30°3-m accuracy requires 5-m accurate DEMviewing angle,10-m elevation error generates 7-m error

Janao

da

Natural Resources Canada

DEM Accuracy (metres) Planimetric Error (metres) Case #2 Case #1 Viewing Angle (degrees) Fine RADARSA **Beam Modes** Standard Wide

Janao

da

SAR

K Geometric modelling

Mathematical modelling (~0.1 m)
Definition of GCPs (0.5-2 m)
Pointing of GCPs (0.5-2 m)
Cartographic co-ordinates (X, Y and Z) of GCPs (0.1-1 m)

Solution Ortho-rectification

⊯ DEM (2-5 m)

Surface height (5-10 m)

Geometric processing

- 1. Characterization of geometric distortions
- 2. Geometric corrections: models and algorithms
- 3. Single image processing
- 4. Strip and block processing
- 5. Stereo processing

Geometric processing: strip & block

Spatio-triangulation is a procedure for the extension of horizontal/vertical control whereby the measurements of angles and/or distances on overlapping images are related into a combined spatial solution using the geometric principles of the images

There are different advantages to simultaneously compute all geometric models:

- To reduce the number of GCPs using tie points
- (5) To obtain a better relative accuracy between the images
- To obtain a more precise and homogeneous mosaic over large areas
- S To generate homogeneous GCP network for future geometric processing

Geometric processing: strip & block

For modelling the satellite motion, different math models can be used:

- A tangent line
- A circular orbit
- An elliptic orbit
- An osculatory orbit

An osculatory orbit model with Gauss' and Lagrange's equations related to celestial mechanics should be preferred for image segment and block

Natural Resources Canada

Geometric processing: strip

Segment can be ordered from image providers or can be stitched by users

- Theoretically, the same number of 3-6 accurate GCPs is required for a long segment than for an image
- Practically, the GCP number will depend on cartographic accuracy: less accurate more GCPs you need
- Avoid extrapolation in planimetry and elevation
- For spatio-triangulation, tie points in the overlap areas for linking images and/or segments, but elevation must be added when stereo geometry is weak

Segment of 5 SPOT images: 60 by 295 km acquired over Kazakhstan © CNES 2000

Natural Resources Ressources naturelles Canada Canada

RADARSAT-1 Data © 1998 Canadian Space Agency; Distributed by MacDonald, Dettwiler & Associates Ltd.

Canada

Natural ResourcesRessources naturellesCanadaCanada

Geometric processing: SPOT block

Block should carefully be ordered from image providers using appropriate viewing angles between segments

With spatio-triangulation:

tie points in the overlap areas for linking images segments, but elevation must be added when stereo geometry is weak

Geometric processing: block

Z plane $\Delta x(Z)$ $\Delta y(Z)$ ETP x $\Delta Z = Z_V - Z_C$ TP (X_c, Y_c, Z_c)

Necessity of elevation tie points

When stereo geometry is weak, adding an elevation value to tie points forces the computation of the stereo-intersection in the Z-plane $\Delta x(Z) \& \Delta y(Z)$ instead of computing $X_C Y_C Z_C$

Weak

It is still more important for the planimetry with same-side off-nadir stereo-intersection.

Canada

Good

Geometric processing: block

Due to weak stereo-intersection geometry (B/H < 0.5) between all segments, GCPs in the outer segments are not enough: error propagates through the centred segments

> GCPs are needed in Segment 2 (B/H=0.06) and elevation tie points for the others (0.10 < B/H < 0.5)

Geometric processing: Ikonos block

Weak stereo-intersection geometry between the 4 segments: B/H < 0.3

(40 x 20 km)

IKONOS Images © 1999 Space Imaging LLC

Geometric processing: Ikonos block

12 GCPs on outer images and 6-10 ETPs on inner images

The RMS errors are around 5m, which reflects the input map

error

Two ortho-IKONOS

Natural Resources Canada

Ressources naturelles Canada

Space Imaging LLC 200 Driginal IKONOS Image ©

Evaluation with vector lines

Ortho-IKONOS with 1:1000 vector lines

Absolute accuracy: about 1 m Janao

da

Geometric processing: SAR block

GCPs and elevation TPs distribution within RADARSAT-1 fine mode image block

Due to weak stereo-intersection geometry bewtween F2-F4 (4°) GCPs were used every two segments

Natural Resources Canada

Geometric processing: VFSR block

Stereo block of SPOT5 HRS/SPOT5 HRG/Ikonos/QuickBird

The experiment used one of the SPOT5 stereo-pair (either HRS or HRG) as master, where only 12 GCPs are collected.

The other stereo pairs (HRG, Ikonos, QuickBird) are slave, where only TPs common with the master are collected.

The results are evaluated on ICPs belonging only to the slave stereo-airs.

Geometric processing: VFSR block

Processing of SPOT5 *master block* using **12 stereo GCPs** combined with all *slave blocks* using **few stereo ETPs**

Master	Stereo Block Adjustment	ETP/ICP	RMS Error X Y Z
HRS	All <i>slave</i> blocks	82/84	2.4 2.9 3.1
HRG	All <i>slave</i> blocks	61/90	1.8 1.8 2.1

ICPs, belonging only to slave block(s), give errors for the slave block(s)

Natural Resources Ressources naturelles Canada Canada

- 1. Characterization of geometric distortions
- 2. Geometric corrections: models and **algorithms**
- 3. Single image processing
- 4. Strip and block processing
- 5. Stereo processing

Stereoscopic processing

Jana

la

Natural Resources Canada Canada

Ressources naturelles

Stereo processing: GCPs

It is important to acquire GCPs in true stereoscopy with an apparatus instead of double monoscopy: stereo viewing cancels Y-parallaxes and improves the quality of the stereo modeling.

RADARSAT images © Canadian Space Agency 2000

Stereo processing: GCPs

RADARSAT-SAR: field corner in stereo

Stereo collection enables

- 1. A better point definition
- 2. a link between the two images
- 3. A better relative/absolute accuracy

Canao

1a

Stereo processing: bundle results

Stereo Bundle Test		RMS GCPs Residuals			RMS ICP Errors		
		X	Y	Z	X	Y	Ζ
SPOT-HRS	10 GCPs/88 ICPs	7.1	6.4	3.1	13.9	8.7	4.7
SPOT-HRG	10 GCPs/23 ICPs	1.5	1.4	1.3	2.6	2.2	2.9
EROS	18 GCPs/112 ICPs	2.4	2.8	3.8	4.2	4.2	5.9
I KONOS	10 GCPs/45 ICPs	1.5	1.4	1.3	2.6	2.2	2.9
Quickbird	10 GCPs/38 ICPs	0.6	0.7	0.4	1.5	1.6	1.4

RMS residuals/errors reflect the GCP/ICP errors: their definition and pointing (1-2 pixels) and map (2-3 m)

...but the 3D modeling precision is better than the pixel

Natural Resources Ressources naturelles Canada Canada

Stereo processing: stereo bundle results

Examples with Radarsat-2 Ultra-fine (U)/Spotlight (SL) modes

Results (in metres) over ICPs from the adjustment computed with only one GCP

Image(s)	ICP	RMSE-X	RMSE-Y	RMSE-Z	Max X	Max Y	Max Z
U2-U25 HH	88	24.8	3.3	42.9	42.1	5.5	74
U2-U25 VV	60	2.1	3.6	3.6	4.8	5.8	8.0
SLA1-SLA24 HH	16	2.5	3.6	4.3	6	5	5

Error in U25 HH metadata (corrected since Fall 2008)

Accuracy on independent check points (ICP) around than 1-2 resolutions

Results (in metres) over ICPs from the adjustment computed with 8 GCPs

Image(s)	ICP	RMSE-X	RMSE-Y	RMSE-Z	Max X	Max Y	Max Z
U2-U25 HH	81	1.4	1.3	1.6	3.2	2.4	3.4
U2-U25 VV	52	1.7	1.9	2.5	4.7	3.7	6.1
SLA1-SLA24 HH	9	0.9	1.1	1.2	1.3	1.8	2.8

Accuracy on independent check points (ICP) better than one pixel

Canada

Natural Resources Canada

Stereo processing: epipolar

Epipolar images are stereo pairs that are reprojected so that the left and right images have a common orientation, and matching features between the images appear along a common x axis.

- | □ | × |

Q 🕅 🕂 🖬 🔇

la

PCI ImageWorks V8.2.0: (VD0) er p001 p002.pix ¥ ≠ ≮ **/ 1** Q Q Q <u>1</u> H B / ∠ +

🔯 QickbirdB... 🛃 Acrobat ... 🖉 LEO Res... 🔛 OrthoEn... 🐻 Arbeitssc... 🍇 Geomatic... 🖬 PCI Ima... 🖬 er_p001... 🖬 File: Q:\...

Formosat-2 anaglyph

- Corrected for systematic distortion (satellite, sensor, earth rotation)

- Corrected stereoscopic parallax (is caused by a shift in the position of observation)

- Correlation (looking for the same point in the two images)

Stereo processing: epipolar

Good stereo-vision implies no Yparallax and thus good geometric modeling (<1 pixel)

Y-parallax smaller than 25 cm between the red/blue well-defined electrical pole

Radarsat-2 ultra fine mode (3-m resolution)

Epipolar ovelaid with 20k contour lines

Stereo processing: epipolar

Canada

Natural Resources Canada

Stereo processing: matching

There are different tools to extract elevation parallaxes between the stereo images (Marr, 1982)

✓ Grey level image matching (Mar and Poggio, 1977)

- Sector Performed on area in the image domain with normalized cross-correlation
- Widely used in remote sensing
- ∠ Least-square matching (Förstner, 1982)
 - Performed on area in the object domain
 - Least square approach minimizing the squares of image grey level differences
 - K Widely used with digital air photos due to multiple overlaps
- ✓ Feature based image matching (Mar and Hildreth, 1980)
 - Performed with common feature in image domain
 - K Widely used in computer vision, not very popular in remote sensing

Canada

DSM Generation steps

Natural Resources Ressources naturelles Canada Canada

Automatic DSM Generation

- Matching modules exist in various commercial RS and photogrammetric systems. Methods used are often based on cross-correlation and match at a regular object or image grid.
- Much better methods exist in research labs.
- For good quality the breaklines must be well modeled, which can be achieved by using edge-based matching, in combination with other matching methods.
- In urban and mountainous areas, if possible, it is essential to use more than 2 images, for better reliability, accuracy and reduction of occlusions (but currently a maximum of only 3 along-track images can be acquired with ALOS-PRISM)

Stereo processing: matching

Stereo processing: DSM accuracy

System (resolution)	Count	<i>LE68</i>	<i>LE90</i>	Bias	Min./Max.
SPOT HRS (10x5 m)	5.4 M	6.5 m	10 m	2 m	-80/72 m
SPOT HRG (5 m)	5.3 M	6.5 m	10 m	2 m	-80/72 m
EROS (1.8 m)	5.4 M	20.0 m	31 m	3 m	-52/115 m
IKONOS (0.8 m)	5.5 M	4.0 m	7.5 m	2 m	-28/30 m
QuickBird (0.6 m)	5.3 M	6.7 m	9.0 m	6 m	-21/29 m

The largest errors (over \pm 20 m) with SPOT represent only 1%, due to radiometric differences (melting snow) between the images

The worse results are obtained with the asynchronous EROS system.

The biases are related to images in winter versus lidar DEM in summer.

DEMs are in fact DSMs, which integrate surface heights

Stereo processing: DSM

Ressources naturelles Canada 10 km x 10 km

Residential houses

Street patterns

Sand pit

Canada

Stereo processing: DSM

Stereo processing: DSM

- A Sand pits
- B Lakes
- C Bare soils
- D Power corridors
- E Residential
- F Trees no leaves
- G Highways

Stereo processing: SAR DSM

Raw DSM U2-U25

3 m posting More than 98% matching -2 m bias 2.9 m RMS errors on 89 ICPs <u>Lidar – DSM</u> -4 m bias; 4-6 m LE68 Min/Max -48/88 m due to blunders

The raw DSM needs some post-processing:

- blunders removals
- water bodies
- interpolation
- smoothing

Blunders removed

Natural Resources Ressource Canada Canada

Water courses & shorelines

Large mismatched areas corrected

3D stereo restitution is used for this post-processing: the shorelines (left) and the contour lines (right)

Canada

latural Resources Ressources naturelles Canada

Small mismatched areas interpolated

Vector around mismatched areaElevation points using stereo plotter

Final DEM

Natural Resources R Canada C

Stereo processing: SAR DSM

10 m

610 m

Filtered/Interpolated/Smoothed DSM U2-U25

Blunders were removed; Mismatched areas were interpolated; Smoothing was performed

Natural Resources Canada

DSM should be topographically coherent with water bodies:

- Rivers
- Flat lakes/oceans

Sana

Shorelines

Natural Resources Canada

Stereo processing: land cover

lakes
bare soil
city
sparse
deciduous
coniferous
mixed

Why making different land cover classes?

la

Natural Resources Canada, Canada Centre for Resources Sensingssources naturelles Canada

Stereo processing: Land Cover

Land cover	Percentage	LE68	<i>LE90</i>	Bias	Min./Max.
Entire	100%	6.4 m	10 m	6.0 m	-36/64 m
Deciduous forests	31%	6.0 m	9 m	12 m	-19/37 m
Conifer forests	12%	4.0 m	7.5 m	2 m	-28/30 m
Mixed forests	36%	6.6 m	10 m	7 m	-26/65 m
Sparse forests	6%	4.0 m	8.5 m	4 m	-19/29 m
Urban/Residential	7%	2.5 m	6 m	4 m	-13/35 m
Bare soils	8%	1.5 m	3.5 m	1.5 m	-23/32 m

The entire DSM is mainly influenced by the mixed forest (36%)

The results are mainly dependent of the land cover, and the worse results (LE90 10m) are obtained in the mixed forests

The bias is related to IKONOS DSM (winter) vs lidar DSM (summer)

The best results (LE90 3.5 m) are obtained on bare soils

Canada

atural Resources Ressources naturelles Canada

Stereo processing: bare surfaces

System (Resolution)	B/H	LE68	<i>LE90</i>	Bias	Over 3 LE68
SPOT-HRS (10x5 m)	0.85	2.7 m	5.6 m	0.2 m	4.0%
SPOT-HRG (5 m)	0.77	2.2 m	5.0 m	-2 m	3.0%
IKONOS (0.8 m)	1.0	1.5 m	3.5 m	1 m	5.0%
QuickBird (0.6 m)		1.3 m	3 m	0 m	4.5%

Best absolute accuracy is with the highest resolution sensor and B/H

Best relative accuracy is with the lowest resolution sensor and B/H.

WHY????

1. SPOT are raw images: original radiometry and geometry

2. SPOT is at higher altitude: less orbital perturbations

Canada

Stereo processing: slopes

Ikonos **DSM** errors draped on topographic DEM shows correlation with slopes

Larger errors (>9 m)

- A Sand pits
- **B** Shadow areas

10 km x 10 km

Stereo processing: slopes

An error evaluation function of the aspects shows that LE68 errors in the sunfacing slopes (azimuths from 76° to 256°) is 1-m (20%) smaller than LE68 errors in the slopes away from the sun (azimuths from 256° to 76°).

Natural Resources Canada

Stereo processing: slopes

Dr. Jacobsen (Hannover Uni.)

Sensor	area	RMSZ [m]	RMSZ F(slope) [m]	Spx_flat areas [GSD]
ASTER	open areas	25.0	21.7+14.5*tanα	0.7
Zonguldak,	forest	31.2	27.9+18.5*tanα	0.9
mountainous	check points	12.7		0.4
KOMPSAT-1	open areas	13.6	11.3+11.5tanα	0.8
Zonguldak,	forest	14.7	14.1+12. <u>1</u> tanα	1.0
mountainous				
SPOT 5	open areas	11.9	5.3 + 5.9*tan α	0.6
Zonguldak,	forest	15.0	6.6 + 6.3*tan α	0.7
mountainous	check points	3.8	3.5 + 0.9*tan α	0.4
SPOT 5 HRS, Gars,	open areas	4.7	4.3 + 1.0*tan α	0.7
rolling	forest	13.0	11.0 + 6.2*tan α	1.8
OrbView-3, Zonguldak,	open areas	8,54	4,37 + 15.7tan α	3.1
mountainous	forest	12,35	7,10 + 15.8tan α	5,0
IKONOS, Zonguldak	open areas	5.8		1.5
IKONOS, Maras, flat	city	1.4		0.22
Cartosat-1, Warszawa, flat	open areas	2.5	2.4 + 8*tan α	0.6

Without special problems, DSM error of 1 GSD can be reached in bare soils and low-to-medium relief

Building extraction from Ikonos DSM

Jkonos DSM in residential area

Building extracted from Ikonos DSM with their heights

Stereo processing: features elevation

points on visible surface = DSM

DSM Dr. Jacobsen Hannover Uni. **DEM after feature elevation filtering**

The dream of Grün et al., ETH Zurich

Natural Resources Canada

Stereo processing: conclusions

DSM generation

- Accuracy: 1-5 pixels depending on terrain slope, land cover (along track) and temporal change (accross track)
- Limiting factor for matching: Low image quality + time decorrelation
- But still many large blunders → Not ready for mapping 1: 50 000 !
- DSM \Rightarrow DTM reduction not solved yet

Radiometric processing

1. Information contents vs. radiometric/geometric parameters

- 2. Mosaicking
- 3. Pan-sharpening

Natural Resources Canada

Radarsat-2 UF25 HH 3-m resolution

Radarsat-2 FQ18 HH 5-8-m resolution

Canada

"RADARSAT-2 Products © MacDONALD, DETTWILER AND ASSOCIATES LTD. (2008) - All Rights Reserved"

Same coverage, same geometry, same polarization, single look

different geometric resolution and cartographic features

Natural Resources

Radarsat-2 UF25 HH 3-m resolution

Radarsat-2 FQ18 HH 5-8-m resolution

"RADARSAT-2 Products © MacDONALD, DETTWILER AND ASSOCIATES LTD. (2008) – All Rights Reserved"

Same coverage, same geometry, same polarization, single look

different geometric resolution but more cartographic features

Natural Resources

Geometry: VFSR XS & Pan

Rule of thumb: 0.1mm GSD in mapping scale required e.g. 1m GSD \rightarrow 1 : 10 000

VFSR data acquired over the test field Zonguldak (Jacobsen et al.) Natural Resources anac

da

Geometry + Radiometry

IKONOS 1 m pixel

EROS 1.8 m pixel

Equivalent viewing and sun illumination angles in winter time

Natural Resources Canada

Texture of conifers

Geometry + Radiometry

IKONOS 1 m pixel

QuickBird 0.6 m pixel

Equivalent viewing and sun illumination angles in winter time

Canada

Ressources naturelles

Geometry & Radiometry: Pan vs XS QuickBird P: 0.6 m pixel XS: 2.4 m pixel

> IKONOS P: 1 m pixel XS: 4 m pixel

Natural Resources Canada

Radiometry: sun elevation

IKONOS 1m panchromatic and 1m pan-sharpened

Identification of objects more simple, but finally identification of nearly same number of objects

IKONOS with sun elevation: 46°, 41° & 61° and slightly different azimuths

Natural ResourcesRessources naturellesCanadaCanada

Radiometry: multi-date

June

August

Seasonal change in Pan SPOT images due to multi-date acquisition \Rightarrow decorrelation

Radiometry: shadow + view angle

First results mapping - buildings and single trees

Reference Vector 25, 1:25 000

Measurements IKONOS

Dr. Armin Grün

Radiometry: contrast + view angle

First results 3D mapping - buildings and single trees

Dr. Armin Grün

Reference Vector 25, 1:25 000

Measurements IKONOS

Radiometry: contrast

First results 3D mapping - buildings and single trees

Reference Vector 25, 1:25 000

Measurements IKONOS

Radiometry: SAR antenna pattern

A radar antenna transmits more power in the midrange portion of the illuminated swath than at the near and far ranges. This effect is known as **antenna pattern** and results in stronger returns from the center portion of the swath than at the edges.

Combined with this antenna pattern effect is the fact that the energy returned to the radar decreases dramatically as the range distance increases.

Natural ResourcesRessources naturellesCanadaCanada

Radiometry: SAR speckle

Speckle reduction can be achieved with:

(1) multi-look processing with the SAR processor. It reduces the resolution.

(2) spatial filtering

RADARSAT single look with specle noise

despeckled scene

Natural Resources Ressources naturelles Canada Canada

"RADARSAT-2 Products © MacDONALD, DETTWILER AND ASSOCIATES LTD. (2008) - All Rights Reserved"

Same coverage, same geometric and single look but different radiometric resolution

Canada

Natural Resources **Ressources naturelles** Canada

Canada

Radiometry

EuroSDRtest area: Trudering

Optical image based on chemical characteristics, radar images based on physical characteristics (cf. Jacobsen)

Aerial color photo with 1.5m

SAR X-band 1.5m

In rural areas information contents at similar level, but partially different details.

In city, less information content with SAR intensity image. More can be obtained the SAR phase

Radiometric processing

- 1. Information contents vs. radiometric/geometric parameters
- 2. Mosaicking
- 3. Pan-sharpening

Radiometric processing

Illumination variation between two images

VFSR

© Natural Resources Canada 1996

Radiometric processing: Ikonos

Venezuela, Vargas State, Avila Mountain Range

40 km x 20 km Elevation: 0-2200 m

Caribbean Sea

(40 x 20 km)

Caracas

IKONOS Images © 1999 Space Imaging LLC

Radiometric processing: Ikonos

Venezuela, Vargas State, Avila Mountain Range

40 km x 20 km Elevation: 0-2200 m

Original IKONOS images © Space Imaging LLC 1999

Four in-track same-date IKONOS Pan images

Natural Resources Ressources naturelles Canada Canada

Radiometric processing: QuickBird

Castle Rock, Colorado, USA

30 km x 30 km Elevation: 1800-2100 m

- 1. Path generation using meta data
- 2. Block adjustment with reduced GCPs and tie points
- 3. Radiometrically balanced

Natural Resources

Canada

Ressources naturelles Canada

QuickBird Images © 2002 DigitalGlobe

Reunion Island Volcanic relief

3100m elevation up to 90° slopes

3 fine modeRadarsat-1:1 ascending and2 descending

6 20k topo maps

Ortho-rectify R-1 mosaic **Reunion Island** Radiometrically

corrected:

- antenna pattern
- normalization
- balancing

Canada

© 1996 CSA

Natural Resources Canada

Ressources naturelles

Ortho-rectify R-1 mosaic Okanagan, B.C.

- Radiometrically corrected:
- antenna pattern
- normalization
- balancing

Natural Resources Canada

Image segment and block generation

RADARSAT-1 (200x150km)

Canada

RADARSAT-1 Data © 2000 Canadian Space Agency; Distributed MacDonald, Dettwiler & Associates Ltd.

Canada

Natural Resources Ressources naturelles Canada

MOSAICKING

RADARSAT-1

Natural Resource Management Project Roraima State, Brazil

RADARSAT-1 Mosaic

5 frames of Beam Wide 1, Ascending Path

June 9 & 16, 1998

© 1998 Canadian Space Agency, Image Courtesy RSI

Radiometric processing

- 1. Information contents vs. radiometric/geometric parameters
- 2. Mosaicking
- 3. Pan-sharpening

Radiometric processing

- Pan-Sharpening
- Transformation $RGB \Rightarrow IHS$
- Principal component analysis
- Wavelet transformation
- SAR- XS data fusion

Radiometric processing: pan sharpening

Fusion of high resolution black & white panchromatic with color (multispectral) imagery creating a high resolution colour image

Based on least squares, developed to best approximate the grey value relationship between the original multispectral, panchromatic and the fused images to achieve a best colour representation.

Statistical approaches were developed to realize a standardized and automated fusion process. The mean, standard deviation and histogram shape for each channel are approximately preserved.

by Dr. Yun Zhang from the University of New Brunswick.

Radiometric processing. Ins

Intensity is the lightness (or darkness) of a colour Hue refers to the actual colour Saturation (grayscale) is the amount of colour present Intensity

PROCESS

- 1. RGB to HIS
- 2. Replace I by Pan
- 3. HIS to RGB

Original RGB

Hue

Ressources naturelles Canada

Saturation

Radiometric Processing: IHS

PROCESS

- 1. RGB to HIS
- Replace I by Pan 2.
- 3. HIS to RGB

Canada

Natural Resources **Ressources naturelles** Canada

Radiometric Processing: IHS

PROCESS

- 1. RGB to HIS
- 2. Replace I by Pan
- 3. HIS to RGB

Some spectral distortions are part of the limitation of the process

Natural Resources Ressourc Canada Canada

Radiometric processing: PCA

Input Images

Principal Component Analysis (PCA)

Linear transformation which rotates the axes of image space along lines of maximum variance

To 'pack' the information from two or more channels to a smaller number of image channels (eigenchannels) to reduce information redundancy.

execution : 06-Feb-2009 11:58:22:448

1 PCA	Principal	Component	Analys	1s		V10.1	EASI/PACE	11:58	06Fe
				1	[S	SFIC	512P	512L]	06F6
Input Output Eigenci	Channels: Channels: hannels :	1 2 6 7 1 2	3 4 8 3	5					
Sampli Sample	ng window: size :	0 32768	0	512	512				
Cha	nnel	Mean	0	eviatio	m				
12345		64.4771 25.4875 29.1240 39.7752 25.9260		10.017 5.945 9.582 11.296 11.133	78 22 24 52				
covar1	ance matri	x for inpu	t chann	els:					
	1	2	3	4		5			
100045	100.356 57.234 91.265 51.623 76.609	35.392 55.315 9 35.933 5 49.949 8	1.822 3.626 6.124	127.605 61.284	123	. 920			
Eigenc	hannel	Eigenvalu	e	Deviat	tion	%Va	riance		
12345		353.908 81.442 39.584 3.010 1.149	04050	18.81 9.02 6.29 1.73 1.07	24 245 217 251 723	73 17 8 0	87% 00% 26% 63% 24%		
E1genv	ectors of	covar1ance	matr1x	Cannar	iged b	y rows)			
	0.48355 0 0.28297 0 0.49801 0 0.63968 -0 0.16999 0	.29935 0. .11530 0. .19743 0. .19006 -0. .90664 -0.	48655 24680 - 18398 72212 38347 -	0.41354 0.90557 0.08585 0.01107 0.03776	0.5	1848 6021 1962 8196 18196			
Note: fo column	or the cov s and prin	ariance ma cipal comp	trix (à onents	bove). appear	image as re	bands -	appear as		
scalin	g Informat	ion:							

Eigen (Channl d	Output Chann1	Unscale Min	ed I Max	Deviation Range	Midpoint	scal Fact
123	6 7 8	-51.607 -70.693 -52.428	239.398 30.709 103.298	4]] 4]] 4]]	0.000	1.00
Execution	n Succe	ssful.				

Radiometric Processing: Wavelet

Wavelet Transformation

Decomposes input image into a set of detail mutually orthogonal images at different scales. These images contain horizontal, vertical, or diagonal details in the image within a spatial frequency band.

Input Ch4: Near infra-red

Natural Resources Ressources naturelles Canada Canada

V_Freq_Ch4128X128

D_Freq_Ch464X64

Radiometric Processing: SAR & MS Fusion

Synthetic Aperture Radar (SAR) and multispectral (MS) channel Fusion

- Algorithm in PCI developed by Dr. Yun Zhang, Department of Geodesy and Geomatics Engineering, University of New Brunswick, Canada.
- The SAR and MS grey value ranges are calculated and then fused with linear algorithms: **Fusion = SARvalue/SCALE1 + MSstretch/SCALE2**

3D topographic mapping

1. Clinometry

- 2. Stereoscopy
- Interferometry 3.
- Polarimetry 4.
- Altimetry: satellite radar and Lidar 5.

Canada

3D topographic mapping: clinometry

Three familiar phenomena:

- (1) Shadow when ground surface is not illuminated
- (2) Occluded areas when ground surface is not visible
- The shadow/occluded areas (and layover for SAR) lengths can then be consistently measured only from vertical structures (buildings, towers, trees) to measure relative heights
- (3) Shade is the variation of brightness depending of the local incidence angle. The inversion of the mathematical expression of VIR reflectance/SAR bakscatter in terms of albedo and local incidence angle.

It works better with uniform reflecting surfaces (Amazon, Antarctica) using Lambertian model.

Canada

Natural Resources Ressources naturelles Canada

3D topographic mapping

- Clinometry 1.
- 2. Stereoscopy
- Interferometry 3.
- Polarimetry 4.
- Altimetry: satellite radar and Lidar 5.

Canada

Trade-off for stereo SAR between viewing, intersection angles and relief

Par estéreo en modo estándar (S3-S6; órbita descendente; alcance terrestre; espaciado de 12,5-m pixel) utilizado en el Proyecto Multiandino de Bolivia (Lizeca *et al.*, 1999).

Imágenes RADARSAT: © CSA 1997, 1998; recibido por CCRS; procesado y distribuido por RADARSAT International.

Natural Resources Ressources naturelles Canada Canada

DEM de extracción estéreo de 8-m resolución Radarsat-1 SAR imágenes con las líneas de nivel a 100-m superpuestas generadas a partir del par estéreo del Proyecto Multiandino de Bolivia utilizando soporte lógico PCI OrthoEngineSE.

Canada

3D imagen cromoestereoscópica (espaciado de 25-m pixel) generada a partir de la imagen ortorectificada Radarsat-1 SAR S6 y del DEM extraído en estéreo de Radarsat-1 SAR del Proyecto Multiandino de Bolivia.

Jana

I: 97-Mar-27(S6, Des) H: DEM S: CONSTANT (Gray value: 150)

Canada

Ressources naturelles Natural Resources Canada

Imagen en perspectiva (espaciado de 25-m pixel) generada a partir de la imagen Radarsat-1 SAR S6 cromoesteroscópica 3D del Proyecto Multiandino de Bolivia superpuesta al DEM extraído en estéreo de Radarsat-1 SAR imagenes.

Natural Resources Canada

- 1. Clinometry
- 2. Stereoscopy
- 3. Interferometry
- 4. Polarimetry
- 5. Altimetry: satellite radar and Lidar

3D topographic mapping: interferometry

Dr. Pierre-Jean Alasset

Drawing courtesy of Prof. Howard Zebker, Stanford University

- Two satellites image the Earth's surface
- Or one satellite takes two images a few days apart
- Data are processed into complex SAR images
- The phase difference of the two images is processed to obtain height and/or motion information of the Earth's surface

Natural Resources Ressources naturelles Canada Canada

3D topographic mapping: interferometry

- Takes advantage of phase difference between two scenes, taken at different times (similar ulletto time lapse photography)
- The phase difference between corresponding pixels in two radar images produce an interference pattern (interferogram)
- In principle if two sequential satellite images are taken from exactly the same position, there should be no phase difference for any pair of corresponding pixels
- If the scene on the ground changes slightly between two scans, the phases of some pixels in the 2nd image will shift.
- Large baseline (300-500 m) for DEM extraction and small baseline (50-200 m) for surface displacement
- If we want to *remove the topographic component* of phase: •
 - the baseline must be small enough that the topography component can be
 - neglected, or
 - an accurate DEM must be used to remove the topography component

Canada

3D topographic mapping: interferometry

Dr. Pierre-Jean Alasset

Difference between 2 radar images radar with topographic phase component removed.

3D topographic mapping: InSAR

Natural Resources

3D topographic mapping: DInSAR

N

km

Dr. Pierre-Jean Alasset

DEM resolution – influence on processing

Mackenzie River, NWT, Canada

WITH High Res. DEM in the ROI

Canada

•

Natural Resources Canada

Ressources naturelles

WITHOUT High Res. DEM in the ROI

3D topographic mapping: DInSAR Dr. Pierre-Jean Alasset

Time spanned between 3 acquisitions

Interferograms corrected of DTM phase from summer 2006 example

24 days RSAT-1 04-Aug-06 / 28-Aug-06

24 days RSAT-1 28-Aug-06 / 21-Sep-06

48 days RSAT-1 04-Aug-06 / 21-Sep-06

Temporal decorrelation

River: loss of coherence

Canada

atural Resources Ressources naturelles Canada

3D Deformation map

Thunder River.

July – August 2006

F3F Desc. Rsat-1

Mackenzie River

Dr. Pierre-Jean Alasset

Permafrost activity

5 Rsat-1F3F images Ascending orbit 24 days time interval

Slant range Deformation (mm)

-20

toward

20

3D topographic mapping: interferometry

Radarsat-2 ultra fine mode 3-m resolution Slant range **Descending orbit** Incidence angle ~ 30° Acquired on 2008-Oct-23

Barringer Meteor Crater Arizona

Canada

Natural Resources Ressources naturelles Canada

Barringer Meteor Crater Arizona

Ultra Fine UF1 Descending orbit Interferogram (Inc. Angle ~ 30deg) 2008-Oct-23/2008-Nov-16

1 fringe = 28 mm in Line-Of-Sight

Orthogonal baseline: 418m

Crater elevation: 180 m

Canada

Natural Resources

DEM obtained by unwrapping the interferogram

Elevation from 1550 to 1750m

Canao

Da

💶 🗖 🗙 🔊 #3 Zoom [3x] 🛛 🗖 🗙

L.O.S.

Natural Resources Ganada

3D topographic mapping: interferometry

General results of interferometric-DEM accuracy. As with stereo SAR, results from low relief terrain (lowest values) will be better than those from areas with significant relief (highest values), although no quantitative evaluation has been done on this topic. Quantitative tests of the accuracy of Radarsat-2 ultra-fine mode InSAR are presently limited but should achieve better results than with Radarsat-1 fine mode.

Satellite	Resolut ion (m)	Accuracy (m)	Notes
ERS 1/2	24	3-20	For most areas, except tropical forest or regions with significant vegetation or moisture variability. The ERS 1/2 tandem data archive is extensive.
JERS	18	10-20	L-band shows better coherence (for more terrain types and for longer time periods) than C-band.
RADARSAT (standard mode)	20-29	10-20	Dry terrain is preferred due to the 24-day orbit repeat cycle and potential loss of coherence.
RADARSAT (fine mode)	7-9	3-10	Dry terrain preferred. Larger baselines are possible, increasing accuracy and reducing sensitivity to propagation effects.

- 1. Clinometry
- 2. Stereoscopy
- 3. Interferometry
- 4. Polarimetry
- 5. Altimetry: satellite radar and Lidar

3D topographic mapping: polarimetry

Polarimetric SAR measures the amplitude and phase terms of the complex scattering matrix.

Based on a theoretical scattering model for tilted, slightlyrough dielectric surfaces (Valenzuela, 1968), azimuthal surface slope angles and signature-peak orientation displacements produced by such slopes are proportional over a range of azimuthal slopes.

An azimuthal angle of an open-field terrain causes a proportional shift of the co-polarised polarimetric signature maximum from its flat position by an angle almost equal to the terrain slope.

Azimuthal direction slopes can then be computed from the polarimetric SAR data without any prior knowledge of the terrain

By integrating the slope profiles in the azimuthal direction relative terrain elevation can be derived. To obtain absolute elevation, one elevation point must be known along each slope profile.

But scientists are now not too confident about this relationship

Ressources naturelles

3D topographic mapping

- Clinometry 1.
- 2. Stereoscopy
- 3. Interferometry
- Polarimetry 4.
- 5. Altimetry: satellite radar and Lidar

Geosat (2 km), Cryosat (250 m), ICESat (70 m), do not provide high resolution data for 3D topo mapping !

Canada

- 1. Techniques and processes
- 2. Examples of 2D/3D products for map updating
- 3. Applications with VIR data
- 4. Applications with SAR data

Map updating: Techniques & processes

GENERALITIES

Map older than 10-15 years → New map generation
New ellipsoid or datum → New map generation
Large area to be mapped → Block adjustment
DEM too coarse or not precise → Stereoscopic method

Natural Resources Ressources naturelles Canada Canada

Advantages of satellite imagery over aerial photography

- The satellite is operational 365 days of the year,
- Frequent re-visit times (e.g. every 4 days),
- Imagery is post-processed relatively quickly,
- No Air Traffic Control restrictions apply,
- Large area footprint (e.g. 16.5 x 16.5 km2) cuts down the need for block adjustment and creation of image mosaics,
- The satellite can easily access remote or restricted areas,
- No aircraft, cameras or expensive equipment are required (by the end user).

And the disadvantages ...

- The typical off-nadir viewing angle of up to 25° is not acceptable
- The production processes required for high resolution satellite imagery may be different to those of traditional photogrammetric data capture
- The reliability of capture and delivery of imagery is unknown,
- Image resolution is low compared to most aerial photography.
- There is a strong possibility of cloud cover

Map updating: Techniques & process

Resolution: VFSR: QuickBird, Ikonos, WorldView, GeoEye, DK1 FSR: SPOT5, Cartosat, Formosat,... SAR: Radarsat-2, TerraSAR, Cosmo-SkyMed

Natural Resources

Ressources naturelles Canada

Map updating: Techniques & process

IMAGES: Satellite

Resolution
Data search/programming

Data search should favour strip acquisition in N/S and same-season acquisition in E/W http://edcsns17.cr.usgs.gov/EarthExplorer

Data programming is only possible for off-nadir sensors: SPOT5 http://sirius.spotimage.fr/anglais/Welcome.htm and RADARSAT-2

Almost no control for programming HR data, except SPOT5

Cloud cover, temporal change, solar illumination are the major problems in search/programming of image block

Map updating: Techniques & process

Natural Resources

Ressources naturelles Canada

- 1. Techniques and processes
- 2. Examples of 2D/3D products for map updating
- 3. Applications with VIR data
- 4. Applications with SAR data

Multiplatform multi-sensor space map with 50,000scale vector overlaid

Canada

Mapping with Ikonos for 99's flooding in Venezuela

Original IKONOS images © Space Imaging LLC 1999

Canada

Four in-track IKONOS pan images

Natural Resources Ressources naturelles Canada Canada

QuickBird Map Image Product over Voisey's Bay

Potential applications

Map updating: A: Positioning B: Feature shape C: Absent feature D: New feature

Natural Resources Canada Re

Orthorectified Panchromatic Quickbird Image of Anaktalak Bay, Labrador Ortho-image de la Baie d'Anaktalak, Labrador - Bande Panchromatique du Satellite Quickbird Natural Resources Resources naturales Canada Canada Canada Canada Canada Centre to Canada Centre to Canada Centre to Centre canadien

Cal Original IKONOS images © Space Imaging LLC 2001

RADAR MAP

French Guyana 1:200 000

Block adjustment of 40 ERS-SAR images Contour lines ⇒ DTM Ortho-mosaicking Speckle filtering Image interpretation Map compilation

Natural Resources Ressources naturelles Canada Canada /sirius-ci.cst.cnes.fr:8100/cdrom-97/ceos1/casestud/spot/carto/ang/ucr_guya.htm

Chromo-stereoscopic image with IRS1-D

Canada

Natural Resources **Ressources naturelles** Canada

Chromo-stereoscopic image with R-1 fine mode for geoscientific applications

Map updating

- Techniques and processes 1.
- Examples of 2D/3D products for map updating 2.
- 3. Applications with VIR data
- 4. Applications with SAR data

Canada

Canada

latural Resources Canada

Ressources naturelles

Map updating: VIR data

OEEPE (EuroSDR) study (Dr. David Holland)

- To investigate the use of high-resolution satellite imagery for national mapping
- Started in 2001, involving mapping agencies and academic institutions from several European countries
- One aspect was to investigate land cover
- •Ikonos 4m XS image of Chandler's Ford (Hampshire, UK)
- A mixture of urban, agricultural and wooded land cover

Ressources naturelles Canada

Map updating: VIR data

OEEPE results - Some comments

(Dr. David Holland)

- High-resolution imagery introduces shadows, which are generalised out of lower resoluton imagery. These shadows:
 - Could be used to identify shadowcasting objects (clinometry)
 - Could be seen as a barrier to accurate classification

Cana

Ressources naturelles

Land cover from 4m Ikonos data – OEEPE results (Dr. David Holland)

- <u>Sweden</u>: Ikonos suitable for identification and capture of land cover types found in Swedish 1:10 000 scale mapping
- <u>UK</u>: Ikonos, when combined with national mapping vector data (OS MasterMap) suitable for identifying most of the CORINE land cover/land use classes
- <u>Germany</u>: Identified several problems when trying to classify the imagery on its own.

OEEPE results - Some comments (Dr. David Holland)

- High-resolution imagery is very heterogeneous a single residential property may have building, road, low vegetation, high vegetation, and water pixels within its boundary. These are usually averaged out in lower resolution imagery.
- This leads to lower accuracy when assessing pixel classification techniques
- ...sounds counter-intuitive.

Map updating: VIR data

Mapping with IKONOS OEEPE test Lucerne (Dr. Karsten Jacobsen)

Ikonos 1-m GSD

Orthophoto 0.35m GSD

Canada

Natural Resources Ressources naturelles Canada

Ikonos 1m GSD

Orthophoto 0.35-m GSD

Natural ResourcesRessources naturellesCanadaCanada

Map updating: VIR data

IKONOS 1-m GSD

Orthophoto (0.35-m GSD)

Natural ResourcesRessources naturellesCanadaCanada

Map updating: VIR data

Natural Resources

Canada

Canada

Map based on Ikonos Pan 1m GSD

Canada

Natural Resources **Ressources naturelles** Canada

Map based on orthoimage 0.3-m GSD

Combination orthoimage + vectors include more information than just map

Ortho-image + only important vectors most economic solution

Ŷ

Natural Resources

Canada

Dr. Karsten Jacobsen

Map based on Ikonos pan

more actual image (new traffic circle)

Map based on orthophoto 0.3m more details, less misidentifications

Aerial photo 0.3 m

Map based on Ikonos pan

Ikonos

Canada

Orthophoto 0.3m

Dr. Karsten Jacobsen

Canada

Ikonos pan

Natural Resources Ressour Canada Canada

Dr. Karsten Jacobsen

Canada

Orthophoto 0.3m

Ikonos pan

Natural Resources Canada

Rule of thumb: 0.05 - 0.1mm/pixel in the map required for sufficient map (*c.f. Dr. Jacobsen, Hannover University*)

- \rightarrow Ikonos 1m GSD can be used for map scale 1 : 10 000
- → Aerial ortho-image with 0.3-m GSD map 1 : 3000

Test area Lucerne confirms the rule of thumb – only few buildings and parts of buildings missed

Main problem of Ikonos in the area of Lucerne: radiometric quality worse like aerial images, contrast enhancement required – in other areas reverse

Mono-plotting has some disadvantages especially in urban area, with stereo no problems of identification of missing objects

Canada

Large Scale mapping - example of OS MasterMap in UK Dr. David Holland OS, UK

Example of data captured from QB

Natural ResourcesRessources naturellesCanadaCanada

QuickBird plus existing map vectors

Map data captured from QuickBird

Dr. David Holland

Natural ResourcesRessourcesCanadaCanada

Vectors Captured from QuickBird

Existing vectors and QB captured vectors

Dr. David Holland

Feature identification results

	Quickbird		Air photo			
Level of requirement:	High	Medium	Low	High	Medium	Low
No of tests	86	65	63	86	65	63
No. of features present	38	38	25	38	38	25
Number correctly identified	35	26	11	37	32	22
Number not identified	3	12	14	1	6	3
Success rate %	92	68	44	97	84	88

• <u>High</u>: **must** be identifiable at this scale of mapping (e.g. boundary feature)

- <u>Medium</u>: **desirable** to be identifiable at this scale of mapping (e.g. type of boundary hedge)
- <u>Low</u>: **some interest** at this scale of mapping (e.g. nature of boundary permanent or temporary)

Feature geometric accuracy results

Feature type	No. of points	Min	Max	Mean	SD	RMSE
House corners	218	0.24	6.57	1.98	1.22	2.32
Fence junctions	28	0.24	3.06	1.37	0.81	1.59

Comparison between house corners and fence junctions on the map, and the equivalent point on the QuickBird image.

What we can/can't capture using QuickBird imagery (Dr. David Holland)

- We can successfully identify and capture the following, to meet the 1:10 000 scale specification:
 - Roads, railways, airports
- We can usually capture:
 - Buildings
 - Lakes, rivers, streams
- Tracks & paths
- It is not usually possible to capture:
 - Fences, walls
 - Narrow tracks & paths
 - Electricity Transmission Lines
 - Field and property boundaries

Other things you cannot collect (Dr. David Holland)

- Small geometric objects:
 - juts, recesses on buildings
 - fence posts
 - pylons
- High and low tide lines
- (And, of course, non-topographic attributes such as place names, road classifications, addresses – but these are also fairly difficult to capture from aerial photography!)

What sort of map could be produced? (Dr. David Holland)

- Using only a satellite image, a satisfactory cartographic map could be produced at a scale of 1:6000 or smaller.
- By changing the specification (e.g. not requiring fences, small paths, streams) larger scale maps could be produced.
- Image maps i.e. georeferenced background images with added attribution – could be produced very easily
- Other information would be needed to populate the attributes (but much of this information may already be available in well-mapped countries)

Change Detection

- Probably the most viable use of satellite imagery for Ordnance Survey
- In both urban and rural areas, QuickBird imagery was successfully used to detect change
- Urban new housing, industrial buildings, roads
- Rural fences, tracks, vegetation boundaries
- Main drawback is the cost of the images

Dr. David Holland

da

nac

ar

Natural Resources

Canada

Completeness of mapping					
lko pan	lko XS	QB pan	QB XS		
Buildings					
66%	70%	67%	68%		
Roads					
95%	95%	111%	111%		
Sidewalks					
41%	53%	46%	100%		

For buildings and roads in relation to topographic map 1 : 5000

For sidewalks in relation to pansharpened QuickBird

Dr. Karsten Jacobsen

Topographic map 1 : 5000

With 5-m GSD the roads can be identified, but sometimes back yards and roads are mixed

Dr. K. Jacobsen

Suitable for topographic map 1 : 50 000 most buildings can be seen but not individually mapped

Cartographic features	Required GSD
Urban buildings	2 m
Foot path	2 m
Minor road network	5 m
Rail road	5 m
Fine hydrology	5 m
Major road network	10 m
Building blocks	10 m

Required GSD for object identification in panchromatic images under usual conditions

(c.f. Dr. K. Jacobsen, Hannover University)

Problems may be caused by shadows and trees hiding objects In general easier if objects are straight and are not directly at streets more difficult if objects are curved and hidden by vegetation

The rule of thumb of 0.05 - 0.1mm/GSD in the map required for sufficient map contents seems to be confirmed by mapping in different areas (*Dr. Karsten Jacobsen, Hannover University*)

Canada

- 1. Techniques and processes
- 2. Examples of 2D/3D products for map updating
- 3. Applications with VIR data
- 4. Applications with SAR data

Ortho SAR mapping

Geocoded radar (2.5 m) STAR3i airborne IFSAR of Intermap Geocoded radar with roads automatically extracted 1:24,000 USGS map

Canac

<u>da</u>

Natural ResourcesRessources naturellesCanadaCanada

Ortho SAR mapping

Quantitative evaluation (omission, commission, 90% error) has to be performed on the final map product.

Field check should be used for quality control

1:24,000 USGS map

Symbolic map (contours, roads, land use, power lines) produced from STAR3i airborne IFSAR of Intermap

Ortho SAR mapping

Sub-area of the previous ERS-SAR spacemap of IGN, France in French Guyana at 200k scale

DTM were generated from existing contour lines. Vectors come from the radar interpretation combined with the old maps

http://sirius-ci.cst.cnes.fr:8100/cdrom-97/ceos1/casestud/spot/carto/ang/ucr_guya.htm

Ultra-fine mode (3-m resolution) Large buildings & residential areas

Natural Resources Canada

Ressources naturelles Canada

Partial update 0121

nada

F. Happi Mangoua, NRCan

Ultra-fine mode (3-m resolution) Forest paths & residential roads

Partial update for forest paths

F. Happi Mangoua, NRCan

÷

Natural Resources Canada Ressources Canada

Partial update for residential roads

Canada

Total update

Ultra-fine mode (3-m resolution) Hydrography

Total update

Partial update

F. Happi Mangoua, NRCan

Ultra-fine mode (3-m resolution) Wetlands

Total update

Partial update

F. Happi Mangoua, NRCan

Ultra-fine mode (3-m resolution) Forest areas

Total update

Partial update Deforested New urban developments in old forest areas

Natural Resources Ressour Canada Canada

Ressources naturelles Canada F. Happi Mangoua, NRCan

3D map updating using stereo SAR workstation Radarsat-1 F1-F5 Stereo-Pair

Colour coding

Highways: green Main roads: red Secondary roads: blue

Extraction coding Wide lines: extracted

Narrow lines: omission

Map updating using stereo SAR workstation Radarsat-1 fine mode stereo pair F1-F5

- Highways (6 km)
 No omission
 CE68 = 6 m & CE90 = 12 m
- Main roads (210 km)
 - 8% omission
 - CE68 = 10 m & CE90 = 20 m

- Secondary roads (310 km)
 31% omission
 CE68 = 11 m & CE90 = 24 m
- City streets (91 km)
 5% omission
 CE68 = 9 m & CE90 = 17 m

Building detection & extraction from IKONOS DSM

IKONOS image © Space Imaging LLC 2000

Natural ResourcesRessources naturellesCanadaCanada

Extracted buildings surface from Ikonos DSM

Extracted building surface from Ikonos DSM

Test site:

Industrial area

Stone wall

Natural Resources

Sun direction

Canada

Database of buildings

Required a priori knowledge on buidings

Generation of database:

- Surface (min./max.)
- Height (min./max., RMS)
- Shape
- Proximity or density

Conclusions: geometry + DSM

Subpixel accuracy georeferencing is a solved problem

- Bias-corrected RPCs & rigorous collinearity-based models with same results
- Surface height should be added to DEM for the orthorectification process
- DEM accuracy: 1-5 pixels depending on terrain slope, land cover and temporal change
- Low image quality + time decorrelation ⇒ blunders
- DSM => DTM reduction not solved yet

Conclusions: mapping & map updating

- Problems of low image quality, contrast, shadow, hidden objects due to view angles
- O Low image quality + time decorrelation \Rightarrow blunders
- Depend on information content, standard, context, specification... for each country
- Rule of thumb: 0.05 0.1mm/pixel in the map required
- Stereo plotting better than mono-plotting (less omission especially in urban area)
- Better for map updating than new mapping

Acknowledgments

- Drs. Manuel Baltsavias & Armin Grün, ETH Zürich, Switzerland
- Dr. David Holland, Ordnance Survey, UK
- Dr. Karsten Jacobsen, Leibniz University of Hannover, Germany
- Dr. Pierre-Jean Alasset, Frédéric Happi Mangoua & Daniel Clavet, Natural Resources Canada
- Paul Briand, Canadian Space Agency, Canada
- Rani Hellerman, ImageSat Intl., Israel
- Marc Bernard, Didier Giacobbo, SPOT-Image, France
- Digital Globe, USA
- Ressources naturelles Québec, Canada

Ressources naturelles Canada

OrthoEngine

Workflow of the processing

Natural Resources

Canada

Ressources naturelles Canada Canada