Multi-scale Shuffling Convolutional Neural Networks for Deep Semantic Image Segmentation Using Multi-Modal Data

Corresponding authors:

Kaiqiang Chen ^{1,2} :	chenkaiqiang14@mails.ucas.ac.cn
Martin Weinmann ³ :	martin.weinmann@kit.edu

¹Key Laboratory of Spatial Information Processing and Application System Technology, Institute of Electronics, Chinese Academy of Sciences, Beijing, P.R. China

²University of Chinese Academy of Sciences, Beijing, P.R. China

³Institute of Photogrammetry and Remote Sensing, Karlsruhe Institute of Technology, Karlsruhe, Germany

Brief summary of the applied methodology:

- 1) Feature extraction:
 - Radiometric features (IR, R, G, NDVI, and 4 modified variants of these)
 - Geometric features
 (8 local 3D shape features derived from the 3D structure tensor)
- 2) Supervised classification:
 - Based on the use of a Residual Shuffling Convolutional Neural Network (RSCNN) [1] (which combines the characteristics of a Residual Network with the advantages of atrous convolution and a shuffling operator)
 - Multi-scale Shuffling Convolutional Neural Network based on the RSCNN-101 architecture, where features from different layers with different scales are fused (for better training, deep supervision is introduced)

[1] K. Chen, M. Weinmann, X. Gao, M. Yan, S. Hinz, B. Jutzi, M. Weinmann, 2018. Residual Shuffling Convolutional Neural Networks for Deep Semantic Image Segmentation Using Multi-Modal Data. *ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences*