
DETECTION OF PLANAR POINTS FOR BUILDING EXTRACTION FROM LIDAR DATA
BASED ON DIFFERENTIAL MORPHOLOGICAL AND ATTRIBUTE PROFILES
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ABSTRACT:

This paper considers a new method for building-extraction from LiDAR data. This method uses multi-scale levelling schema or
MSLS-segmentation based on differential morphological profiles for removing non-building points from LiDAR data during the data
denoising step. A new morphological algorithm is proposed for the detection of flat regions and obtaining a set of building-candidates.
This binarisation step is made by using differential attribute profiles based on the sum of the second-order morphological gradients. Any
distinction between flat and rough surfaces is achieved by area-opening, as applied within each attribute-zone. Thus, the detection of
the flat regions is essentially based on the average gradient contained within a region, whilst avoiding subtractive filtering rule. Finally,
the shapes of the flat-regions are considered during the building-recognition step. A binary shape-compactness attribute opening is
used for this purpose. The efficiency of the proposed method was demonstrated on three test LiDAR datasets containing buildings
of different sizes, shapes, and structures. As shown by the experiments, the average quality of the buildings-extraction was more than
95%, with 96% correctness, and 98% completeness. In terms of quality, this method is comparable with TerraScan R©, but both methods
significantly differ when comparing correctness and completeness of the results.

1 INTRODUCTION

Recent advances in airborne Light Detection and Ranging (Li-
DAR) technology have led to the development of accurate, reli-
able, and fast data-acquisition systems that go hand-in-hand with
the increasing demand for generating accurate building represen-
tations (Lukač et al., 2013). Over the past few years, a consid-
erable number of methods have been developed for this purpose
that either rely on LiDAR data alone, or fuse it with aerial im-
ages. Although the latter contributes to the accuracy of building-
extraction by providing supplementary information beyond the
scope of LiDAR systems (e.g. surface reflectance on multiple
electromagnetic spectrum bands), they may not always be avail-
able and several drawbacks may be related to the noise that is
present within these images, such as shadows, clouds, and high-
rise buildings (Meng et al., 2009). In any case, the processing of
massive amounts of geometric data, with a lack of topology as
obtained by LiDAR systems, is still a challenge.

Traditionally, a normalised digital surface model (nDSM) is com-
puted for this purpose by subtracting the digital terrain model
(DTM) from the LiDAR point-cloud (Lohmann et al., 2000). Over
the past few years, several advances in building-extraction have
been made that are based on mathematical morphology. Most of
these methods apply morphological operations on a 2.5D grid
generated from a LiDAR point-cloud in order to cope with the
lack of topology. One early example was based on maximum
filtering (Vosselman, 2000), and dual-rank morphological filter-
ing (Lohmann et al., 2000). Tarsha-Kurdi et al. (2006) used di-
rectional gradient filters on interpolated DSM for detecting off-
terrain segment edges. The morphological opening was therefore
applied in order to remove any pronounced segments remaining
on the ground, and morphological closing for filling the gaps
within non-ground segments. By using the least-square method,

the authors detected non-ground planes that belonged to build-
ings. Zhang et al. (2006) used progressive morphological filter-
ing (Zhang et al., 2003) to find non-ground points by gradually
increasing the filtering scale, and thresholding the height differ-
ences. Afterwards, the authors used region growing and plane-
fitting to detect buildings’ regions. Vu et al. (2009) considered
LiDAR data within a multi-scale morphological space. The au-
thors analysed elevation clusters’ features across the scale-space
in order to detect buildings. Meng et al. (2009) proposed ground-
filtering based on the elevation differences between neighbour-
ing pixels, and then removing the majority of non-building points
using morphological operators. The remaining non-building re-
gions were removed by area and compactness analysis. Chen et
al. (2012) extended progressive morphological filtering for de-
tecting non-ground points, where the authors applied a regional
growing and adaptive random sample consensus (RANSAC) al-
gorithm for the detection of buildings’ segments. They consid-
ered distance, standard deviation, and normal vectors’ attributes.
Recently, Cheng et al. (2013) have proposed a building extrac-
tion method using the reverse iterative mathematical morpholog-
ical (RIMM) algorithm. This method is an extension of (Zhang et
al., 2003), as it avoids relying on a constant slope by dynamically
calculating those threshold values applied regarding height dif-
ferences. Although this method overcomes the problem of deal-
ing with buildings of different sizes, it still uses predefined struc-
turing elements and is, therefore, heavily subjected to buildings’
shapes.

This paper proposes a morphological approach for building ex-
traction from LiDAR data. The method is independent of the
sizes as well as the shapes of buildings by applying differential
attribute profiles, whilst traditional morphological operators are
used for removing non-building points during the data denosing
step. Section 2 provides a brief introduction to those morpholog-
ical operators used in this paper. The new method is proposed
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in Section 3. The results are given in Section 4, whilst Section 5
concludes the paper.

2 DIFFERENTIAL PROFILES

Capital letters are used in this paper to denote binary sets and the
lowercase letters denote grey-scale functions. Capital and lower-
case Greek letters denote the operators. Accordingly, G = {pn}
is a binary set containing N foreground points pn ∈ E, where
n ∈ [1, N ], and E ⊂ Z2, whilst g : E → R is a regular (grey-
scale) grid given by a mapping function that maps a grid-space
E to height-values from R. Traditional morphological opera-
tors (Shih, 2009) are defined by a structuring element w (or wS ,
where w is square-shaped and S is its scale), whilst attribute fil-
ters (Wilkinson, 2007) are defined by a generic attribute function
Λ and an attribute threshold λ. The following notations denote
the fundamental morphological operators:

• Γ(G) is a binary morphological opening acting on G,

• γ(g) is a grey-scale morphological opening acting on g,

• Φ(G) = Γ(GC)C is a binary closing that is by duality prop-
erty (Ouzounis and Wilkinson, 2007) equal to a complement
of the opened complement of G, and

• φ(g) = −γ(−g) is a grey-scale closing, where complement
is substituted by negation.

The multi-scale grid segmentation that is the focus of this pa-
per is based on a morphological concept know as a granulometry
(Maragos, 1989). A granulometry is an ordered set of morpho-
logical filters that reduces the content of a grid by filtering it on
an increasing scale. When considering traditional morphological
operators, a granulometry is defined as an ordered set of struc-
turing elements ~w = {wSi |i ∈ [0, I]}, where S0 = 0 and
Si−1 < Si. As shown by Pesaresi and Benediktsson (2001),
when registering the differences between successive members of
a granulometry at a point-level, a band-pass grid decomposition
is achieved known as differential morphological profiles (DMPs).
Denoted as δ~w, DMP essentially assigns a response-vector with
I elements to each point by

δ~w(g) = {γwSi−1
(g)− γwSi (g) | i ∈ [1, I]}. (1)

A particular member of DMP, denoted as δ~w[i](g), is referred
to as ith scale-zone of g, whilst γwSI (g) is a grid multi-scale
residual. Using similar principle, Ouzounis et al. (2012) recently
extended the concept of DMPs to differential attribute profiles
(DAPs). Denoted as δΛ

~λ
, where ~λ = {λi}, λ0 = 0, and λi−1 <

λi, DAP with I members is obtained by

δΛ
~λ

(g) = {γΛ
λi−1

(g)− γλi(g) | i ∈ [1, I]}. (2)

Those members of DAP, given by δΛ
~λ[i]

(g), are considered as

attribute-zones of g and γΛ
λI

(g) is a grid’s attribute residual. How-
ever, this generalisation is complicated when considering all the
possible attribute functions based on which filtering can be achieved.
Namely, when considering e.g. shape-attributes (for example
shape-compactness), where the relationship between two con-
nected regions C′ ⊆ C from a grid-space E (i.e. C′, C ⊆ E)
does not necessarily mean Λ(C′) < Λ(C), the subtractive fil-
tering rule needs to be considered in order to achieve a stable
decomposition (Urbach et al., 2007). For simplicity, a further

condition for complementing Equation 2 is, therefore, increasing
the property of Λ given by

C′ ⊆ C ⇒ Λ(C′) ≤ Λ(C). (3)

A straightforward example of an increasing attribute is the area
of the connected region C from a grid-space E.

Decomposition achieved by DMPs and DAPs allows for auto-
mated grid segmentation by registering two characteristic proper-
ties from each response vector:

• r(g) containing the maximal response obtained at each par-
ticular point, and

• q(g) containing the scale at which the maximal response has
been induced.

Several approaches have been proposed based on this notion (Pe-
saresi and Benediktsson, 2001; Beucher, 2007; Hernández and
Marcotegui, 2011; Ouzounis et al., 2012). In this paper, we de-
fine a mapping θ~w(g) : g → (r(g), q(g)) at each particular point
p as

r(g)[p] =
∨

i∈[1,I]

δ~w[i](g)[p], (4)

q(g)[p] =
∨

i∈[1,I]

i | r(g)[p] = δ~w[i](g)[p], (5)

where
∨

is the maximum. Although the given definition is based
on δ~w, the same definition is used to define θΛ

~λ
(g) based on δΛ

~λ
(g).

3 THE EXTRACTION OF BUILDINGS

The proposed method operates in θ~w(g) and θΛ
~λ

(g) scale-spaces
in order to achieve building extraction from LiDAR data. The
following four steps are used:

• Initialisation arranges LiDAR points into a grid,

• removal of outliers is a data denoising step, where levelling
based on θ~w is used to remove those features that are too
small to be considered as buildings,

• binarisation is a grid decomposition step, where candidates
for building-regions are obtained according to their sizes
and surfaces based on θΛ

~λ
, and

• recognition of buildings, where regions’ boundary-shapes
are taken into account.

3.1 Initialisation

Since connectivity between points is required when using mor-
phological operators, the input LiDAR data point-cloud is ar-
ranged into a regular grid. The grid-space E is defined by the
bounding-box of the input dataset, whilst the resolution of a grid
Rg is defined according to the LiDAR point-densityDL asRg =
1.0/DL, making the accuracy of the method in geometrical terms
proportional to the data density. When there is more than one
point within a particular grid-cell, the lowest point is selected as
the representative point pn ∈ E in order to minimise the amount
of vegetation and the number of other non-building points above
the ground, whilst an interpolation is used to define the value of
empty grid-cells, i.e. g[p∗n] = UNDEF , where p∗n ∈ E and
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UNDEF denote the undefined values. Inverse distance weight-
ing (IDW) was selected in our case, amongst several spatial inter-
polation techniques (Chaplot et al., 2006). As explained by Lloyd
(2010), IDW produces a smooth oscillation-free surface without
introducing any additional outliers to the data by

g[p∗n] =

∑
pn∈Wp∗n g[pn] d−rpn∑

pn∈Wp∗n d
−r
pn

, (6)

where pn is a point from the data-sampling neighbourhood W p∗n

of p∗n, dpn is the Euclidean distance between p∗n and pn, and r
is the power parameter that defines the smoothness of the inter-
polation. As shown by Chaplot et al. (2006), accurate results are
obtained by letting r = 2, where W p∗n contains no less than the
three closest points.

3.2 Removal of outliers

This denoising step is primarily focused on filtering low and high
outliers (Sithole and Vosselman, 2004; Mongus and Žalik, 2012).
Thus, sharp peaks and steep valleys need to be considered. A lev-
elling schema, know as MSLS-segmentation (Pesaresi and Benedik-
tsson, 2001) is applied for their detection. Consider two DMPs
obtained from g: θ~w(g) containing positive response values and
θ~w(−g) containing negative response values (note that this is
equivalent to replacing γ with φ in Equation 1 and multiplying
the obtained responses by −1). At a particular point pn, the fol-
lowing labelling schema is used to obtain a characteristic scale
q(g) of g and corresponding response r(g):

q(g)[pn] =

 q(g)[pn] | r(g)[pn] > r(−g)[pn]
q(−g)[pn] | r(g)[pn] < r(−g)[pn]

0 | r(g)[pn] = r(−g)[pn]
, (7)

r(g)[pn] =
∨
{r(g)[pn], r(−g)[pn]}. (8)

Accordingly, when q(g)[pn] = q(−g)[pn], a point pn belongs to
a steep valley and is a suitable candidate for a low outlier, whilst
q(g)[pn] = q(g)[pn] indicates a point belonging to a sharp peak,
i.e. a suitable candidate for a height outlier. When q(g)[pn] = 0,
a point is not considered as a noise-point and should, therefore,
not be filtered. Thus, a threshold value t[pn] at a point pn is, in
our case, defined as

t[pn] =

 2Rg if q(g)[pn] = q(−g)[pn]
4Rg if q(g)[pn] = q(g)[pn]
∞ if q(g)[pn] = 0

. (9)

Note that a higher threshold value is used when considering con-
vex peaks in order to minimise the distortions of buildings’ ge-
ometries caused by the filter, whilst controlling the maximal fil-
tering scale wSI contained in ~w allows manipulation over the re-
moved features. Specifically, major portions of vegetation-points
can be removed by recognising them as high outliers, whilst points
lying within the buildings (usually recorded when targeting glass
buildings) are removed as they are recognised as low outliers. In
our case, ~w = {w0, w1, ...wSI} is used, where SI = 3.0m was
heuristically defined. A set of outliers To is then given by

To = {pn|r(g)[pn] ≥ t[pn]}. (10)

The outliers from To are then interpolated using eq. 6 and the
obtained result is shown in Fig. 1.

3.3 Binarisation

The binarisation step searches for flat regions in g with areas from
a predefined range, in order to obtain a set of suitable building-

(a)

(b)

Figure 1: Denoising of (a) LiDAR data generated grid, where (b)
a majority of the vegetation is removed.

candidates. A new morphological algorithm is proposed that uses
differential attribute profiles δΛ

~λ
(g) based on attribute function

Λ, defined as the sum of the second-order morphological gradi-
ents. Let functions %ex and %in estimate the external and internal
morphological gradients, respectively (Shih, 2009). The second-
order morphological gradient that essentially captures the rate of
change in the gradient of g, is then estimated as %in(%ex(g)). For
a particular connected region C ⊆ E, a sum of gradients Λ(C)
is obtained as

Λ(C) =
∑
pn∈C

%in(%ex(g))[pn]. (11)

The points on the lower sides of the edges are emphasised, as the
external gradient is computed first. Thus, flat surfaces above a
neighbourhood (e.g. rooftops) have significantly lower Λ-value
than those with rough surfaces (e.g. trees). Consequently, when
applying attribute opening γΛ

λ based on Λ with an attribute thresh-
old λ, regions with larger areas are removed, if their surfaces
are flat, rather than when they are rough. The ratio Raλ between
the area A(C) of the removed regions C and the value of ~λ[i]
can, therefore, be used for an accurate characterisation of surface-
flatness. Based on this notion, building-extraction from LiDAR
data can be achieved over the following three steps:

• δΛ
~λ

(g) is computed first, where the following definition of ~λ
is used

~λ = {0, λmin, λmin + λ∆, λmin + 2λ∆, ..., λmax}, (12)

• each member δΛ
~λ[i]

(g) is thresholded in order to obtain a set

of filtered points T iB as

T iB = {pn|δΛ
~λ[i]

(g)[pn] > 0.0}, (13)

• finally, binary area opening ΓA~λ[i]∗Ra
λ

(T iB) is performed on
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each T iB in order to remove those regions that dissatisfy the
ratio criterion Raλ.

Thus, the detection of flat-regions for building-extraction is es-
sentially achieved based on an average second-order morpholog-
ical gradient contained within a region. Although this type of av-
erage is a non-increasing attribute, the proposed framework pro-
vides an elegant solution to avoid dealing with the subtractive
filtering rule that is otherwise required in these cases (Urbach et
al., 2007). The results obtained in the case of the test-set from
Fig. 1, are shown in Fig. 2.

(a)

(b)

Figure 2: Detection of flat regions in (a) denoised grid g and (b)
the results obtained based on δΛ

~λ
(g), colour-coded according to i,

where ~λ = {0, 50, 100, ..., 25000} was used. Two typical errors
are highlighted. In the left case, points from the neighbouring
vegetation are accepted as building points whilst, in the right case
a brick wall with a planar top surface is accepted.

Two typical errors introduced by the proposed algorithm are high-
lighted in Fig. 2b. In the first (left) case, the building-region ex-
tends over the neighbouring trees, whilst a brick wall with flat
top-surface was detected in the second (right) case. Both types
of errors can be successfully removed during the building recog-
nition step, applied over a set of building-candidates G, obtained
by

G = ∪iΓA~λ[i]∗Ra
λ

(T iB). (14)

3.4 Recognition of buildings

In the final step of the proposed method, those flat regions that
do not describe buildings are removed from the binarised grid

G. Firstly, any thin portions of regions that may extend from
the buildings over the neighbouring objects (e.g. trees, as shown
in Fig. 2b) are removed using binary morphological opening,
i.e Γw3(G) is used in our case. Binary morphological closing
Φw3(Γw3(G)) is then applied in order to remove any holes that
may be present within the remaining regions. Finally, the shapes
of the regions are considered and shape-compactness attribute
opening is applied in order to remove long and thin regions. Let
Cn ∈ G be a connected set of points from G, and n a connected-
set-index. The shape-compactness Ψ(Cn) of Cn is defined as
(Nixon and Aguado, 2012):

Ψ(Cn) =
4πA(Cn)

P (Cn)2
. (15)

where A(Cn) and P (Cn) are the area and perimetre of Cn, re-
spectively. Shape-compactness attribute opening is then defined
as

ΓΨ
ψ (G) = {Cn ∈ G | Ψ(Cn) < ψ}. (16)

Thus, the set of building regions GB is given by

GB = ΓΨ
ψ (Φw3(Γw3(G))). (17)

4 RESULTS

The accuracy of the proposed method was examined on three test-
cases within various urban features containing buildings of differ-
ent sizes and shapes. The test datasets DS1, DS2, and DS3 were
located at Ljubljana - Črnuče, Medvode, and Maribor, in Slove-
nia, respectively (DS1 is shown in Fig. 2, whilst DS2, and DS3
can be seen in Fig. 3). The data-densities of the test-sets were as
follows: 12.35 points/m2 in the case of DS1, 9.97 points/m2

in the case of DS2, and 6.31 points/m2 in the case of DS3.

A different set of parameters was used for each test-case, as shown
in Table 1. λmin corresponds to the area of the smallest building
contained within the dataset and is slightly larger in the case of
DS1 than in the cases of DS2 and DS3. The minimal compactness
of the building region defined by φ does not significantly influ-
ence the results. Consequentially, φ-values are relatively close,
where slight differences in the definition do not contribute more
than 2% to the quality of the building-extraction, as shown in Ta-
ble 2. However, the definition of λ∆ has a more significant influ-
ence on the results as it defines the area by which a building can
be attached to the ground and still successfully detected. The pro-
posed method is relatively sensitive to this particular parameter
as a larger λ∆-value increases the probability of false-positives
(e.g. detection of plateaus), whilst lower λ∆-values increases the
probability of false-negatives (e.g. attached buildings).

Table 1: Parameters used for buildings-extraction from LiDAR
test datasets.

Symbol Description DS1 DS2 DS3
λmin Minimal attribute value 30 20 20
λmax Maximal attribute value 40000 40000 40000
λ∆ Attribute-zone size 250 500 300
Raλ Attribute to area ratio 1.5 1.5 1.5
ψ Minimal compactness 9 11 10.5

The quantitative evaluation of the method was achieved by com-
paring the extracted building-regions with the reference data ob-
tained by the commercial software TerraScan R©, where any er-
rors were corrected manually. The following quality metrics were
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(b)

(a)

(c)

Figure 3: The results obtained by the proposed method on test-
sets (a) DS1, (b) DS2, and (c) DS3, where (left) the heightmaps
are coloured according to the ground-truth data. The yellow
colour represents true-positives, the red colour false-positives,
and the blue colour is used to show false-negatives. The extracted
building points are (right) triangulated and visualised together
with the generated DTM, based on Mongus and Žalik (2012).

considered, according to the ISPRS guidelines (Rutzinger et al.,
2009):

Completeness =
TP

TP + FN
,

Correctness =
TP

TP + FP
,

Quality =
(
Completeness−1 + Correctness−1 − 1

)−1
,

where TP , FP , and FN denote true positives, false positives,
and false negatives, respectively. A comparison of the results ob-
tained by the proposed method and the initial results obtained by
TerraScan R© is shown in Table 2.

The evaluation of the proposed method showed an over 95%
average quality of building-extraction, achieving 99.66% aver-
age completeness and 96.33% correctness. Although the aver-
age quality is comparable with TerraScan R©, comparison between
the completenesses and correctnesses indicates some significant
differences in the performances of both methods. Namely, the
proposed method achieves lower average correctness in compari-
son to TerraScan R©, with the worst quality of building-extraction
achieved in the case of DS1 (as shown in Figs. 1 and 2a). In
comparison with DS2 and DS3, DS1 contained a considerable
number of plateaus. Since some of them were recognised as
buildings, the correctness of the building extraction decreased.
However, this might be prevented by supplementing the method
with an efficient ground-extraction algorithm (e.g. Mongus and
Žalik (2012)). Another major contributor to errors in correctness
is the fact that the proposed method does not consider a sufficient
mechanism for preventing the spreading of the building-regions
throughout the neighbouring objects, e.g. trees where up-to 1.5m
overspreading was noticed. Note that binary opening only mit-
igates this problem but does not solve it. On the other hand,

TerraScan R© showed difficulties when detecting small buildings
and often rejected the boundaries of larger ones. The average
completeness of TerraScan R© is, therefore, lower than the one
achieved by the proposed method. However, since the proposed
method is based on connected operators that are unable to break-
up flat-zones, it is incapable of detecting buildings below the at-
taching point. Consequentially, the attached buildings remained
undetected (i.e. garages placed below the surrounding terrain in
the case of DS2) or only partially detected (in several cases, this
effect reached up to 3.5m). This is the reason for the signifi-
cant majority of errors in completeness introduced by the pro-
posed method and can be observed in the case of DS2 (as shown
in Fig.2b). On the other hand, DS3 was included within the
test dataset with the purpose of examining the behaviour of the
method in regard to the shapes and sizes of the contained build-
ings. As shown in Fig. 3c, a great majority of errors were again
related to false-positive plateaus and partially detected attached-
buildings. The results, therefore, indicate that this method is ca-
pable of detecting buildings of vastly different sizes and shapes.
As the method achieved the worst results in the case of a test-
set with the highest data-density (i.e. DS1), whilst the results are
comparable in the cases of DS2 and DS3, there is no indication
that the method is subjected to data density.

5 CONCLUSIONS

The paper proposes new morphological approach for the extrac-
tion of buildings from LiDAR data. This method achieves an ac-
curate removal of high and low outliers based on MSLS-segmen-
tation schema, whilst a new morphological algorithm is proposed
for the extraction of flat regions. Differential attribute profiles are
estimated based on the sum of the second-order morphological
gradients, whilst area opening performed on each attribute-zone
essentially leads to the thresholding flat regions according to the
average contained gradient (i.e. the ratio between the sum of gra-
dients and the area of the region). Since the errors introduced by
the extractions of flat regions are characteristic, they are success-
fully removed according to the boundary shape during the final
step of the method. Although sufficient accuracy of the proposed
method was shown in comparison to TerraScan R© in all the test-
cases, the great majority of errors could be related to particular
limitations of the method. Namely, this method does show diffi-
culties when detecting attached buildings, leading to proportional
errors in the completeness of building detection, whilst errors in
correctness are related to the limited detection of discontinuous
terrain features (e.g. plateaus) and the overspreading of building
regions throughout neighbouring vegetation. The development
of sufficient solutions to these tree issues will be considered dur-
ing our future work. Moreover, the mathematical stability (i.e.
scale-invariance, idempotence, and increasing property) of the
proposed morphological filter still needs to be proven and the ex-
tension of the method for point-clouds obtained by multi-view
stereo (MVS) and structure from motion (SfM) will be consid-
ered.
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Table 2: Quantitative evaluation of the proposed building-extraction method in comparison with TerraScan R©.
TerraScan R© The proposed method

Metric DS1 DS2 DS3 Average DS1 DS2 DS3 Average
Completeness 96% 94% 97% 95.66% 99% 98% 99% 98.66%
Corectness 97% 98% 98% 97.66% 94% 98% 97% 96.33%
Quality 93% 92% 95% 93.33% 93% 96% 96% 95.00%

Development Potentials for the period 2007 − 2013, develop-
ment priority 1: Competitiveness of companies and research ex-
cellence, priority axis 1.1: Encouraging competitive potential of
enterprises and research excellence.
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