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Abstract – The mathematical model of spectral radiant inten-
sity of the atmospheric haze without essential restrictions on 
the optical parameters of atmosphere is offered. The model is 
based on the solution of the radiative transfer equation for the 
difference between the exact solution and the solution in a 
small angle approximation (SAA). As SAA contains all the sin-
gularities of the exact solution, the indicated difference is a 
smooth function and its finding does not present difficulties by 
any numerical method of the solution. On the basis of the de-
signed model the algorithm of videocorrection of the underly-
ing surface images, founded on the definition of the atmos-
phere parameters by a signal in the reference channel in UV-
spectrum region is offered. 

Keywords: remote sensing, UV-spectrum region, radiative trans-
fer equation. 

1. INTRODUCTION 

At the optical remote sensing the image of the underlying surface 
is strongly distorted by the influence of the light scattering in the 
atmosphere. In the UV-spectrum region the surfaces of practically 
all the ground objects have a low reflection factor, and the light 
scattering in the atmosphere essentially increases. It allows to al-
locate the channel in the UV-spectrum region, in which the signal 
is determined only by the radiance of an atmospheric haze. The 
existing methods of calculation of the atmospheric haze radiance 
are developed at the strong restrictions on the atmosphere parame-
ters, particularly on the degree of the light scattering anisotropy. 
Such approach strongly restricts calculation opportunities in a 
broad spectral range. 
It is connected with the features of a physical model of the radia-
tion transfer – ray approximation. In particular, owing to the 
physically selected direction of the radiation propagation in space 
the radiance angular distribution contains a singularity. The singu-
larity in the radiance angular distribution is internally proper to the 
description of the radiation transfer processes in the ray approxi-
mation, which essentially reduces convergence of the solution of 
the radiation transfer equation (RTE) by any numerical method. 
This singularity of the radiance angular distribution is of the key 
character that requires the development of special methods of the 
RTE solution. Chandrasekhar, 1950, offered to subtract the direct 
nonscattered component from the solution and to state the equa-
tion for the smooth remainder that eliminates δ-singularity of the 
radiance angular distribution. 
However the atmosphere has suspended particles with the size 
much greater then the wave length, that according to the Mie the-
ory gives a strong anisotropic light scattering on them. In the con-
ditions of a strong scattering anisotropy in the small angles the ra-
diation is indistinguishable from the direct radiation, and the 
method of (Chandrasekhar, 1950) becomes ineffective. 

The method of the elimination of this solution singularity is of-
fered in the paper. It is based on the representation of the solution 
as the sum of the small angle approximation (SAA) and a smooth 
part. As SAA contains all the singularities of the exact solution, 
the indicated difference is a smooth function and its finding does 
not present difficulties by any numerical method of the solution. 
On the basis of the designed model the algorithm of videocorrec-
tion of the underlying surface images, founded on the definition of 
the atmospheric parameters by a signal in the reference channel in 
UV-spectrum region is offered. The obtained values of the optical 
parameters of the atmosphere are recalculated in the primary 
channel in a visual or IR spectrum region. Using the mathematical 
model the radiance of the atmospheric haze and point distortion 
function in the primary channel are calculated, that allows making 
an image restoration of the underlying surface. As some materials 
(snow, limestone) have high value of reflectivity, the images in 
the reference channel can be a source of the completely new in-
formation about the state of the underlying surface. 

2. METHOD OF RTE SOLUTION 

Let's consider a boundary-value problem of RTE for an atmos-
pheric slab irradiated from above by a flat unidirectional source 
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 0l̂  – the incident direction of the external radiation on 

the upper bound of the slab, 0 0
ˆ ˆ( , )μ = l z ; 

 ε – attenuation coefficient, 
 Λ – single scattering albedo of the medium; 
 τ0 – slab optical thickness. 
The axis OZ of a Cartesian frame is located perpendicularly 
downwards the slab border. Hereinafter the unit vectors are 
marked by the symbol “^”. 
The boundary-value problem (1) completely corresponds to the 
case of the optical remote sensing of an underlying surface in day-
light conditions. In the real atmosphere the light scattering phase 
function in the expansion on Legendre polynomials has some 
hundreds terms. In this case the solution of (1) by any numerical 



method becomes mathematically ill-conditioned. Using the 
spherical harmonics method the number of the equations in the set 
is equal to the quantity of the terms in the expansion of the phase 
function on Legendre polynomials. In the discrete ordinates 
method (DOM) a very small-sized grid on the sighting angles is 
required, that results in the instability of the equation set. In algo-
rithms of Monte-Carlo methods the backscattering is improbable 
event, which enters the solution with great weight. For the elimi-
nation of such instability we’ll subtract from the solution an ani-
sotropic angle part expressed by the solution of the RTE bound-
ary-value problem (1) in SAA (Goudsmit, 1940): 
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Let’s present the solution of a boundary-value problem (1) as 

 0
ˆ ˆ( , , ) ( , , ) ( , , )SAAL L Lτ μ ϕ = τ + τ μ ϕl l . (3) 

The solution in SAA satisfies a similar boundary-value problem 
(1), but with boundary conditions neglecting a backscattering: 
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As SAA contains all the singularities of the exact solution of the 
problem (1), the rest ( , , )L τ μ ϕ , satisfying a boundary-value prob-
lem 
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is a smooth function at any degree of the scattering anisotropy. It 
eliminates the mathematical incorrectness of the problem (1) and 
allows using any numerical method for the solution (5). In the pa-
per (Boudak, 2003) the determination algorithm of a smooth part 
of the solution by a method of spherical harmonics was consid-
ered, however analytical complexities in this case impede the gen-
eralization of the method on the case of the arbitrary medium ge-

ometry. Let's take the advantage of DOM for the solution (5), 
which allows extending an offered method to the case of three-
dimensional medium geometry. The expression for the function 

( , , )F τ μ ϕ  is easy to calculate, using (2) and the addition theorem 
for the surface harmonic: 
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Let's present the scattering phase function as decomposition on 
Legendre polynomials, and the required function to a Fourier se-
ries on the azimuth 

 
0

(cos ) (2 1) P (cos )
N

l l
l

x l x
=

γ = + γ∑ , (8) 

 ( , , ) ( , )em im

m
L C

∞
ϕ

=−∞

τ μ ϕ = τ μ∑ , (9) 

that after substitution in (5) taking into account the orthogonality 
of the azimuth harmonics will result in the combined equation set 
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Let’s replace the integral in the equation (10) by a Gaussian quad-
rature 
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where wj – weight coefficients of a Gaussian quadrature, 
 μj – roots of the polynomial PN+1(μ). 
In this case the set (10) can be exchanged to the set of the N ordi-
nary differential equations 
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The set solution looks like 
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where B 1e Ue Uτ Γτ −= . 
The free term in (13) is expressed as 
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The condition of the system matrix (13) is quickly worsened with 
the increase of the slab depth. For the elimination of this effect it 
is necessary to take advantage of the scale transformation (Karp, 
1980) and to multiple both parts (13) by a matrix 1SU− . Therefore 
the equation (13) will accept the form 
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The set (15) contains the N equations with the 2N unknown quan-
tities. The boundary conditions give the missing N equations 
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which can give a matrix form too. 

The offered algorithm differs by rapid convergence: N>20 is 
enough for Henyey-Greenstein scattering phase function xk=gk 
with parameter g=0.9. The generalization of the indicated algo-
rithm on the case of the arbitrary three-dimensional geometry does 
not represent any difficulties. Such approach is similar to SHDOM 
(Evans, 1993), however it exceeds essentially on the convergence 
due to the analytical registration of the angular singularities of the 
solution. 
The registration of the diffuse reflection from the underlying sur-
face completely corresponds to regular DOM. For the solution of a 
boundary-value problem (1) in the inhomogeneous medium the 
slab is divided into the set of homogeneous slabs. The requirement 
of the coefficient continuity (9) is established on borders between 
them. The rapid convergence of the algorithm practically doesn’t 
limit the amount of the slabs in the mathematical model. 

3. RESULTS OF COMPUTATIONAL MODELING 

At the calculation of the signals in the system of the optical re-
mote sensing of the underlying surface the model of the optical 
performances from (Mc Clatchey, 1977), and spectral depend-
ences of a reflectance of the underlying surface from (Eaton, 
1979) were taken. 
In Fig. 1-3 the calculations results of the light field parameters are 
given for the following conditions: a solar angle is 50°, observa-
tion is in the nadir, meteorological visibility range on the Earth 
surface is 20 km, the underlying surface is vegetation or fresh 
snow, short-wave limit of the observation range is 0.3 microns. 
The calculations were performed for various observation heights 
h, where the maximum observation height of 650 km is adopted as 
a typical flight height of the satellites of the remote sensing of the 
natural resources. 
The most visually the relation between a haze and a signal is rep-
resented by the spectral dependence of the coefficient κ (Fig. 1), 
which is the ratio of the haze radiance to the object radiance. The 
coefficient κ characterizes the degree of the contrast decreasing 
because of the atmosphere influence. One can see from Fig. 1, that 
in the spectrum range about 0.3 microns the haze radiance com-
pletely predominates above the signal, that allows to recommend 
this spectrum range for the reference channel on the haze radiance 
measurement. The necessary optical parameters of the atmosphere 
can be determined from extra scanning of the atmosphere in the 
height. Such algorithm is equivalent to the differential algorithm 
of the compensation of the backscattering radiance offered in 
(Gordon, 1978). 
The UV - channel can be used not only as the reference in the sys-
tem of videocorrection, but also for the direct sensing of the un-
derlying surface. For the comparison in Fig. 2 the diagrams of κ 
for snow are given. It is easy to see, that there are other contrasts 
in UV - range which are not apparent in a visible band that makes 
it possible to use it effectively at the remote sensing, for example, 
for the observation of snow and ice covers. 
However the low value of signals and contrasts in comparison 
with a visible band show the strict requirements to the contrast 
sensitivity of TV-system. The opportunity of the image processing 
with the purpose of the contrast range magnification and the cor-
rections of the spatially - frequency distortion are determined by 
the signal/noise ratio ψ.In the practice of the remote sensing the 
high-performance TV - system with optical-mechanical scan and 
single-element receiver on the photomultiplier tube found the 
broad application. In Fig. 3 the relative spectral dependence 
ψλ/ ψ0.55 is shown for such systems, which are calculated at the 
constant device parameters. From the analysis of the given de-



pendence it is obvious, that the TV-systems in UV - spectrum (in 
comparison with the visible band) at the equal requirements to the 
resolving ability and ψ demand increasing sensitivity in more than 
100 times. 
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Figure 1. The ratio of the haze radiance to the object radiance 
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Figure 2. The ratio of the haze radiance to the object radiance 

Therefore, owing to the dominant contribution of the atmosphere 
in the signal the operation of TV-system takes place in the mode 
of the background restriction that determinates low contrasts and 
signal / noise ratio of the UV images. 

4. CONCLUSIONS 

The simulation of the observation conditions in UV-range shows a 
key opportunity of its usage as the reference channel for the defi-
nition of the backscattering radiance. On the other hand, unusual 
contrasts of natural formations in UV allow recommending it for 
the purposes of sensing on a snow cover. 
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Figure 3. The relative signal to noise ratio 
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