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Abstract –Owing to the non-linearity of the rainfall-
infiltration-runoff relationship, soil water content in the 
river basin represents a key parameter to be monitored 
for flood management purposes. Remote sensing 
observations can be used in hydrologic models as a 
source of time varying hydrologic state data that allows 
constraining model predictions. The analysis of a series 
of ERS-1 SAR images showed that the mean 
backscattering coefficient of selected soil parcels is 
strongly correlated with a ground-based wetness index 
the so-called soil saturation index (SSI). This paper 
shows that SSI values obtained via remote sensing can 
be used to update the internal saturation states of 
rainfall-runoff models through the sequential 
assimilation of the soil moisture information. The 
assimilation procedure is based on an extended Kalman 
filter as both simulated and observed saturation states 
are prone to errors. The magnitude of the correction 
thus depends on the ratio of errors on the observations 
and the model.  Further research is needed to reduce the 
uncertainties that remain over the reliability of SAR to 
provide soil moisture information with a sufficient level 
of accuracy. 
 
Keywords: Data assimilation, Kalman Filter, flood forecasting, 
soil moisture, SAR, ERS 
 

1 INTRODUCTION 
 

Rainfall-runoff as well as flood propagation models both greatly 
benefit from the availability of spatially distributed Earth 
observation (EO) data especially in ungauged basins. Remote 
sensing observations can be used as parametric input data, as 
initial condition data and as time-varying hydrologic state and flux 
data (Walker, 2005). Soil moisture observations that were derived 
from radar imagery have been successfully used in the past to 
improve hydrologic model-based discharge predictions (Pauwels 
et al., 2001; Aubert et al., 2003). This has been achieved by the 
assimilation of the statistics of remotely sensed soil moisture 
patterns in lumped conceptual and spatially distributed physically-
based rainfall-runoff models. Soil moisture determines the 
partitioning of the precipitation into saturated overland flow, 
saturated subsurface flow and unsaturated subsurface flow. As a 
matter of fact, the monitoring of this environmental variable 
during successive wetting and drying up phases helps assessing 
the readiness of a river basin to generate storm runoff during 

rainfall events. However, large-area soil moisture networks barely 
exist at the high-frequency and fine spatial resolution that would 
be required (Houser et al., 1998). SAR data could be a valuable 
alternative to retrieve soil moisture but because of the concurrent 
effect of soil moisture, surface roughness and vegetation on the 
backscattered signal as well as the speckle inherent to all SAR 
data sets, there is still significant uncertainty over the reliability of 
SAR to provide accurate soil moisture data (Schmugge et al., 
2002). Moreover, even under optimal conditions, SAR remote 
sensing can only be used to retrieve soil moisture in the first few 
centimeters of soil whereas runoff generation is more strongly 
controlled by deeper layers, especially in regions with a temperate 
oceanic climate. Hence, the scope of this study has been (1) to 
establish empirical relationships between radar backscattering and 
an estimate of the saturation degree of the basin and (2) to 
assimilate this information into a conceptual rainfall-runoff model 
in order to increase the reliability of its discharge predictions. 
 

2 STUDY AREA AND AVAILABLE DATA 
 
At its outlet in Hesperange (Grand-Duchy of Luxembourg, 

Europoe), the upper part of the transnational Alzette river basin 
has a drainage area of 292 km2. Discharge measurements are 
available from 1997 to present. Based on daily rainfall 
information collected at 5 raingauges, the basin averaged rainfall 
amounts were calculated. Potential evapotranspiration was 
estimated with daily meteorological data measured at the synoptic 
station of Luxembourg airport. Meteorological data are also 
necessary to guarantee that on the days of satellite overpass the 
radar signal return is not influenced by frozen soils or high wind 
velocities. Based on the measurement of the water table depth at 
10 piezometric stations scattered throughout the basin’s alluvial 
plain, the wetness of the basin is estimated by the means of a soil 
saturation index explained in more detail hereafter. The 
topography of the floodplain is characterized by small elevation 
changes and an average width of 2.5 km. A SPOT derived land 
cover classification shows that land use is very homogeneous in 
the floodplain with permanent pasture largely dominating. As a 
matter of fact, good conditions are provided for signal change 
detections based on SAR satellite images. The EO database is 
comprising 13 ERS-1 and ERS-2 images, acquired on descending 
pass, with 9 of them during the ERS-1 Ice Phase, from 20/11/1993 
to 23/02/1994. During this phase the usual repeat cycle of 35 days 
was shortened and ERS-1 operated with a repeat cycle of only 3 
days. Three flood events were covered that occurred by the end of 
December 1993, in early January 1994 and in January 2003. Care 
was taken to sample images that represent a broad range of 
possible moisture conditions. The SAR instrument on board of the 
ERS satellites is a C band (5.3 GHz) radar, operating in VV 



polarization with a spatial resolution of 30 m and a pixel size of 
12.5 m. The incidence angle is 23 degrees. Speckle noise is 
reduced using the Frost filtering with a 5x5 kernel and a 
coefficient of variation that equals 5. 

 
3 METHODOLOGY 

 
The sequential assimilation of remote sensing observations 
represents a possible step forward in order to improve the 
accuracy of the production function in lumped conceptual 
hydrologic models. The assimilated measurements therefore need 
to be representative of the whole catchment at a given time. 
Whereas the time variation of the water content in the first few 
centimeters of soil is only loosely connected to the time variation 
of the water budget over the entire basin, fluctuations of the water 
table depth in the floodplain are more representative of the time 
variation of the basin hydric state (Pfister et al., 2003). However, 
unlike more aggregate components such as river discharge, water 
table levels strongly reflect small-scale characteristics of the basin. 
Since individual point measurements of water table depth do not 
fully account for the state of saturation at a large scale, a spatial 
averaging procedure is required. Based on the recorded minimum 
and maximum water table depth at each available piezometer, a 
regional mean soil saturation index is computed (Matgen et al., 
submitted). When the water table reaches its all time minimum 
depth, the SSI is 100% i.e. we assume that the soil is completely 
saturated. The SSI decreases linearly until the measured water 
table depth reaches its all time maximum value (SSI=0%). This 
study is limited to the highly permeable floodplain area of the 
river Alzette because in the shallow groundwater areas a strong 
bound exists between the water table and the water content in the 
first few centimeters of soil (Chen and Hu 2004). The 
simultaneous evolution of the water budget at a catchment scale 
and the mean SSI led us consider that the estimation of a 
floodplain based SSI provides some valuable information on the 
expected runoff generation during upcoming storm events.  
 

 
 

Figure 1.  Assimilation of remote sensing observations. 
 
The methodology that was adopted is summarized in Figure 1. 
Principal Components Analysis (PCA) was applied on archive 
SAR data in order to outline hydrological response units with 
distinctive empirically obtained “backscattering-SSI” functions. 
This preliminary work provides a radar interpretation key that 
allows deriving the SSI from a newly acquired SAR scene. The 
SSI that is obtained with SAR or with field measurements is 

assimilated into a conceptual rainfall-runoff model in order to 
improve the reliability of its discharge predictions. 
 

4 REMOTELY SENSED SATURATION LEVELS 
 
The PCA is applied to the time series of ERS SAR scenes of the 
river Alzette floodplain. These images cover markedly different 
wetness conditions during several winter seasons in order to study 
the decrease of the radar backscattering signal during drying-up 
phases following important flood events. At the floodplain scale, 
with homogeneous land use and constant topography, the first 
principal components (PC) are mainly dominated by the variance 
related to the changing areas. The PCs are thus mainly controlled 
by subsurface and surface water dynamics. A classification 
scheme, based on the principal components and k-means 
algorithm, leads to the segmentation of the floodplain into several 
hydrological behaviour classes with distinctive responses versus 
changing moisture conditions (Figure 2). To validate this 
classification method with ground based estimations, the relation 
between the mean backscattering values of groups of 50x50 m 
microplots within each PCA-derived class and the water table 
measurements, expressed by the means of the SSI, are evaluated. 
Results show that each class of microplots is characterized by the 
slope of the “backscattering-SSI” function and by the SSI 
threshold value at which groundwater resurgence appears. When 
the SSI approaches 100%, the outcropping of the water table in 
the hollow of the concave footslopes produces groundwater 
resurgence over an expanding area. The water ponding implies 
very low signal return due to the specular backscattering effect on 
the water surface. 

 
Figure 2.  Hydrological response units and the variation of radar 

backscattering with changing moisture conditions. 
 

By using the empirical SSI-backscatter model (Matgen et al., 
submitted), a global soil saturation index for the day of the 
satellite overpass is computed. This empirical model was found to 
give good results when plots with non-significant relationships 
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with moisture conditions were no longer considered. The 
empirical model is based on the assumption that soil moisture near 
the drainage network and the piezometric recordings are strongly 
correlated and that the water table depth much more than the point 
measurement of soil moisture, represents an aggregate 
measurement of the basin wide saturation level. Hence, the SSI 
can be related to the saturation level of the soil reservoir of the 
rainfall-runoff model. The latter determines the infiltration during 
storm events and the evaporation and drainage between storm 
events. The relationship between the backscattering and the 
hydrologically relevant SSI still needs to be strengthened. At this 
point the uncertainties of SAR derived moisture indices remain 
high. The results presented hereafter focus on the potential 
application of the SSI as it can be obtained by the means of such a 
SAR interpretative regression model.  

 
5 ASSIMILATION PROCEDURE 

 
5.1  Rainfall-runoff Model 
 
The hydrologic model used in this study is a 11-parameter lumped 
conceptual model, which simulates daily discharge using rainfall 
and potential evapotranspiration as input fluxes. The model is a 
version of the widely used HBV model (Bergström, 1995) that has 
been adapted to the particular environment of the modelled 
catchment. The conceptual model was further modified to allow 
for the assimilation of saturation state variables. The soil reservoir 
is characterized with a parameter of maximal storage capacity, 
Smax [mm], a parameter of non-linearity, b [-], describing the 
production function of runoff and, finally, the maximum 
percolation rate percmax [mm/d]. The rainfall is divided into two 
terms: a first part fills the soil reservoir which is drained by deep 
percolation and evapotranspiration and a second part, the net 
rainfall, fills the two routing reservoirs (linear baseflow reservoir 
and non-linear fast runoff reservoir) according to a ratio 
depending on the soil saturation. The recession rate of the two 
routing reservoirs differs. As a continuous model it can predict 
antecedent wetness (i.e. summer versus winter conditions in a 
humid temperate hydrological regime). 

 
Figure 3.  Relationship between the state of the soil reservoir (S) 

and the observed floodplain based SSI. 
 

The model’s parameter values were not observed and had to be 
estimated through model calibration. A Monte Carlo framework is 
adopted to sample the parameter space and the predictions of 
individual model parameterisations are weighted according to the 

model fit to the observed discharge and water table depths. Hence, 
the performance measure is an additive combination of the Nash 
evaluation criterion and the coefficient of determination of a linear 
regression analysis of the SSI-S(t) relationship (Figure 3). The 
latter expresses the agreement of fit between the simulated water 
content in the soil reservoir and the floodplain based SSI. 
Although dotty plots reveal many good fits across the parameter 
ranges implying that the individual parameter values are less 
important than the parameter set as a whole, only the best 
performing parameter set is retained.  
 
5.2  Sequential assimilation 
 
The states of the model that represent the storage of water in the 
root zone, can be updated with field measurements. It is based on 
the assumption that a better simulation of the model states at day j 
will also improve the accuracy of the model states at days j+1, 
j+2, etc. (Aubert et al., 2003). After each time step of simulation, 
coincidental observations are sought. A control simulation without 
any data assimilation can be considered as the baseline run i.e. we 
assume that the real-time observations contain no valuable 
information. On the contrary, if a direct assimilation takes place, it 
is assumed that the model contains no information at all. 
Refsgaard (1997) states that among different data assimilation 
methods, the state updating methodology is the best suited for 
non-linear models. Hereafter, the method consists in correcting the 
internal state of the model that accounts for soil moisture, i.e. S(t), 
whenever a field measurement of SSI is available. The risk of 
severe model failures due to a wrong assessment of the antecedent 
moisture conditions will become less high because even in 
calibrated models, without any assimilation of ground data, the 
internal state data of the model are inherently uncertain. Thus, 
besides improving the reliability of the model forecast, the 
sequential assimilation allows increasing the internal consistency 
of the conceptual rainfall-runoff model. Pauwels et al. (2001) 
come to a somewhat similar conclusion and state that one of the 
main reasons to do data assimilation is to reduce the need for 
model calibration and to reduce the effect of uncertainty in certain 
parameter sets on the model results. 
 
The first step in data assimilation consists in establishing the 
relationship between the observed SSI and the level of the soil 
reservoir S. Figure 3 shows the SSI derived from the piezometric 
recordings against the simulated level of the soil reservoir without 
assimilation. A linear relationship is chosen to relate the SSI to the 
model state whenever a measurement is available. A coefficient of 
determination of 0.88 shows that the linear regression is 
acceptable. In this short summary we only consider a particular 
case of the Kalman filtering (forced mode) where we assume that 
the uncertainties on the observations are very small compared to 
those that are associated to the model. Thus with each assimilation 
step the current level of the soil reservoir is changed to become 
the value derived from the ground observation. Generally, 
however, both forcing terms and model output are known to be 
uncertain. The model gives a state estimate with high temporal 
resolution, but the values are altered by the accumulation of 
errors. Measurements give an alternative estimate that is usually 
more accurate, but they are sparsely distributed in space. Hence, 
representation error is typically the main error source that needs to 
be considered (Sorensen and Madsen, 2004). The magnitude of 
the correction should therefore depend on the ratio of the errors on 
the observations and the model and the best estimate of the true 
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saturation state should be obtained based on the available 
information from the two sources of information.  

 
Figure 4.  Simulated discharges compared to the observed 

discharges with and without data assimilation 
 
To measure the efficiency of the assimilation procedure, the 
simulated discharges of the Alzette catchment are compared to the 
observed discharges with and without data assimilation (Figure 4). 
It is clearly shown that the updating of the level of the soil 
reservoir allows improving the simulation of the high flows. 
Without assimilation the peak discharges of the high flow events 
were generally underestimated by the model (e.g. floods that 
occurred in December 1999, January 2001 and January 2003). 
These results suggest that during flood events following long 
periods with sustained rainfall, the calibrated model 
underestimates the antecedent moisture conditions. In this case, 
the updating of the water content in the soil reservoir through the 
assimilation of the SSI helped improving the model performance. 
This is not a general rule however and the difference between 
simulated and observed discharges sometimes increased after the 
ground-based estimation of the SSI is assimilated into the model. 
Floods that occurred following a long period without rainfall, are 
less well simulated with assimilation than without. This result 
suggests that during dry periods the water table depth in the 
floodplain is no longer representative of the overall hydric state of 
the basin. Obviously, the assimilation procedure has no improving 
effect at all on the model’s performance during low flows. 
 

6 CONCLUSION 
 
It is known that the backscattering of the radar signal emitted by 
active microwave sensors is highly influenced by the soil surface 
conditions, especially the water content of the first few 
centimeters of soil. The present study showed that hydrologically 
relevant information was derived from SAR imagery and was 
successfully used to improve discharge predictions through data 
assimilation. As this index can be derived from SAR imagery, 
remote sensing techniques show a potential of becoming an 
important asset for many flood forecasting applications. However, 
the dispute whether accurate spatially distributed soil moisture 
values can be obtained from SAR images is wide spread and far 
from being resolved and, to date, many doubts exist over the 
reliability of Synthetic Aperture Radar (SAR) to provide accurate 

soil moisture information. Furthermore the imaging frequency of 
currently available spaceborne SAR still appears to be insufficient 
for operational applications. Since several spaceborne SAR 
instruments providing high spatial resolutions and multi-
polarisation capabilities will be mounted on satellites to be 
launched from 2005 onwards, the upcoming years will certainly 
decide upon the future of radar imagery in hydrology. 
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