Comparison of remote sensing technologies of global the Earth's climate changes

Khokhlov V.N., Mirzoeva L.A, Naumova N.N, Obvintzeva O.O,

S. I. Vavilov State Optical Institute, Khokhlov@soi.spb.ru.

control have been analyzed. They include: the techniques of station distribution results in the fact that, for any instant, actually surface temperature measurements and palaeoclimate records weighted average temperature is calculated instead of mean global study, satellite climatology and global Earth's albedo measurement technique based upon earthshine observations. It has been shown that lack of specific measurement results in insuperable difficulties in discovering the cases and explaining the causes of the climate global changes. Proposals for the improvement of Earth's climate global changes monitoring techniques and their joint application have been formulated.

Keywords: global changes, climate, earthshine, radiation, albedo.

1. INTRODUCTION

The problem of Earth's climate global changes was raised in the sixties of the last century. First, only surface air temperature data of ground weather station net were used for the problem solution. Then, satellite measurements were used as well. Development of important satellite technique played also a small negative role causing considerable reduction of ground weather station net. Interest to Earth's temperature history stimulated development of the technique of palaeoclimate records study of the climate in the past. In the end of the nineties of the XX-th century the climate change control technique based upon earthshine observations was used again. Comparative analysis of Earth's climate global change monitoring techniques enables one to make up a conclusion about validity of using the near-surface air temperature measurements provided by existing weather station net, data of satellite and radiosonde probing for climate global change control, and find out usefulness of eartshine observations for the climate control.

THE TECHNIQUES OF CLIMATE GLOBAL 2. **CHANGE MONITORING**

2.1 The near-surface air temperature measurement technique

The analysis of the measurements made by weather station net is routinely performed by different groups of scientists [Jones, 1994, Hansen et. al., 1999, Peterson et. al., 1997, IPCC, 2001]. This analysis has a whole series of limitations. First, the existing net consisting of ground meteorological (~7000) and radiosonde (~1700) stations does not cover oceans and is distributed over land surface non-uniformly. It is illustrated in Fig. 1a, that presents the chosen by us as the regular net. The bar chart of station number bar chart of distribution of meteorological station number on 20 equal-area regions (~25500000 km²), made by partition of the in Fig. 1c. Daily, more than 1 launch is made only by every second globe surface by regular icosahedron facets.

Symbolic notations of regions are plotted on the X-axis. Regions "10" and "11" with the largest numbers of stations (>1100) relate to North America and include a part of Great Britain. Regions it is impossible to make reliable daily temperature dependence "30", "40" and "41" with the numbers of stations varying from 450 calculations. The results of calculations of the function of Earth's to 800 include Europe, Russia, China, India, North and Central surface irradiation by the Sun have shown that even for the Africa. Finally, three more regions "33", "42" and "43", where simplest type of the irradiation function (1-2 harmonics), it must be Japan, Australia and Oceania are situated, have numbers of stations verified, and hence the daily variations must be verified as well, of about 400, with an average density of 1 station per 64000 km². not less than at 3 - 5 points. The explanation of distortions of the Nine out of 20 regions, covering South Atlantic, the Pacific and

Abstract. - Major techniques of Earth's climate global changes Indian Oceans include from 15 to 139 stations. The non-uniform

Figure 1. Distribution (a) of meteorological station number on regions, comparison (b) of annual temperature anomaly dependence (1) with station number (2 and 3) according to data [Peterson, et. al., 1997], and distribution of station number (c) on daily radiosonde launch number.

temperature. The presence of inhomogeneous weighting function in it misrepresents a sampling and makes questionable the use of the weighted average temperature instead of mean global temperature. Data in Fig. 1b show the time dependence of temperature anomaly and station numbers for average, maximal and minimal temperatures, and show correlation of the temperature anomalies with periods of change of station number. This fact also indicates possible influence of the sampling method used in statistical analysis upon final result.

Second, though [Peterson et. al., 1997] and [Hansen et. al. 1999] mention repeatedly the existence of more than 100 methods of daily mean temperature calculations leading to different monthly temperatures, they were never discussed it in detail. Let us consider this problem taking as an example the radiosonde stations integral distribution on radiosonde daily launch number is shown station out of ~300 stations. Only 7 stations launch more than two radiosondes every day. Only 3 stations daily launch more than three radiosondes. It is evident that when such station net is applied average annual temperature trends due to incorrect accounting of the daily dependence has been illustrated using the data for stations requiring experimental verification. The second weak point is the with WMO indexes 16560 and 88889. First, the surface necessity of calibration of the indirect paleoclimatic information. temperature annual dependence has been approximated by 4 first Here, the radiocarbon probing method plays an important role. The Fourier harmonics. In contrast to ordinary arithmetical averaging, validity of dating is estimated using certain model of the past, such approximation of the annual dependence decreases the which itself needs its validity estimation. Giving preference to variance of annual temperature. Moreover, the differences between certain model leads automatically to the corresponding uncertainty experimental and theoretical values enable one to determine the of radiocarbon dating. This means that radiocarbon dating is not an daily temperature anomalies. The weight function for calculation independent parameter. Further, paleoclimatic data calibration of the daily dependence has been determined for the period of must be performed using the meteorological data of specific years 1990-2001. Since the year 1995 the function becomes not regions rather than their global characteristics. Also, it is necessary homogeneous. The immediate cause of it is the reduction in to take into consideration poor time resolution of paleoclimatic number of annual launched radiosondes (from ~1200 during the data. period of years 1990-1995 till ~750 in the subsequent years). The reduction was mainly performed by the decrease of daily 2.3 Satellite technique radiosonde launches. Thus, the daily temperature averaging, Satellite technique has been developed in projects "Nimbus", similar to global temperature determination, has been actually performed with the non-uniform weight function distorting the as in many others. In addition, observing satellite system final result. The coefficients of linear trends of average annual consisting of low orbiting GPS satellite assembly, which measures temperatures T_1 and T_2 , calculated for stations 16560 and 88889 temperature basing on delay and atmospheric transmittance of with ordinary arithmetical averaging and with the use of radio signals on frequencies of 10.3, 17.2, and 22.6 GHz. approximating representation correspondingly, have been The principal devices used for gathering satellite information on determined taking into account all the daily measurements, only temperature relief structure of the Earth's surface and its the extremal temperature values, and the remainder daily values. atmosphere are the scanning radiometer AVHRR and the Slope values of trends T_1 (°C/year) are equal (-0.006, 0.098, -0.043) for station 16560 and (0.017, 0.032, 0.022 °C/year) for polar orbiting satellites. station 88889. Slope values of T_2 trends are equal (-0.006, -0.004, 0.300) and (0.002, 0.085, -0.001).

2.2 Paleoclimatic measurement technique

The major sources of paleoclimatic information dendrochronological data, coral geochemical reconstruction data, glacial core investigation data, results of analysis of cave, lacustrine and oceanic sediments, borehole temperature chronology measurements, historical data, data about chronology of positions of mountain glacier moraines, and data of synthesis of multi-proxy evidences of temperature changes in the past.

The reconstruction results of proxy paleoclimatic data (Fig. 2) show a discrepancy between some plotted data (dendrochronology, corals, geothermy). The distribution of paleoclimatic stations of geothermal, dendrochronological, glaciological and geochemical (coral) studies of the Earth's thermal history on the terrestrial globe has a pronounced regional character. This is the first weak point of the paleoclimatic method. Therefore, the global expansion of paleoclimatic tendencies one can consider only as the hypothesis

"TIROS", "NOAA", "GOES", "DMSP", "EOS", "Meteor" as well

Microwave Sounding Units (MSU), placed on geostationary and

Advanced Very High Resolution Radiometer [Brown et. al., 1985] forms images of the Earth in 5 channels. MSU is a four channel scanner, measuring microwave radiation in the oxigen absorption band from 50.3 to 57.95 GHz.

are Active remote sensing of the Earth's limb from GPS satellites enables one to calculate the atmosphere temperatures at high altitudes with small water vapor contents. Additional information for separation of the contributions of water vapor and temperature [Eriksson et. al., 2003] is necessary at low heights.

Spectral atmospheric transmission and spectral channels of devices AVHRR and MSU in the range 0.4-100000 microns are shown in Fig. 3a.

Figure 3. The spectral channels of devices AVHRR and MSU (a), and satellite information reduction procedure (b).

temperature (Fig. 3b) has evident sources of uncertainties.

visual channels (1 and 2) are transformed in albedo values and thermal infrared channels are transformed into effective brightness thermal infrared channels (3, 4, and 5) into temperatures. Only the temperatures according to Planck's law. The two latter radiation pre-launch calibration is used for the calibration of the visual sources in the infrared region are strongly dependent on the surface channels as the corresponding onboard calibration source is lacking. The calibration of the AVHRR thermal infrared channels is performed before launch and during flight.

Uncertainties in the Earth's atmosphere accounting. The radiance the thermodynamic temperatures of the surface. values obtained in AVHRR channels 1 and 2 are corrected for Uncertainties in the conversion of the thermodynamic Rayleigh scattering and ozone absorption. The correction of temperatures into surface temperatures. This is the most radiance values in the thermal range takes into account the complicated and controversial transformation, being based on radiation of the атмосферы, the Earth's surface and its repeatedly reflected descending atmospheric radiation.

depends on the appropriateness of the atmospheric models, used for corrections. According to the radiosonde data, there is a relationship between near-surface water vapor partial pressure and Earth's surface temperature (Fig. 4).

Figure 4. The dependence of near-surface water vapor partial pressure on Earth's surface temperature. Stations: 80 ° N - 01004, 21504, 71072; 40 °N - 16560, 47058, 72597; 0° - 64910, 91925, 96481; 40°S - 68906, 91925, 94821; 80 °S - 89009, 89055, 89606.

The dependence has been plotted according to the data of 15 stations, measured for the period from 1990 to 2001 [Oolman, 2005]. The enveloping curve corresponds to the dependence of sated water vapor partial pressure dependence on temperature. The large data scattering show well the necessity of using correct atmospheric structural models.

Figure 5. The comparison of satellite and ground temperature measurements [Christy et. al., 2000, Bukin, 2001], and the emissivities of different materials.

The routine procedure of reducing the AVHRR and MSU data into Uncertainties in the transformation of corrected radiance into brightness temperature. The data transformation is performed in Uncertainties in primary data reduction. The measurements in three steps. First, the integrated radiance values obtained in the emissivity. Second, the effective temperatures are transformed into brightness temperatures, which are transformed for the materials with known surface emissivity values (Fig. 5b [Zhang, 1999]) into

theoretical models. The transformation is often performed using ordinary adiabatic approximation. The results of the temperature The account of radiation components, especially for slant paths, measurements made measurements are shown in fig. 5b and 5c.

2.4 Earth's global albedo measurement technique based on earthshine.

Ten years ago, it was proposed [MacDonald and Koonin, 1992.] to combine earthshine ground measurements with satellite data. The results of Earth's global albedo determination through earthshine observations are given in Table 2. The data show decrease of the albedo during the last five years and then its subsequent increase.

Table 2 Annual mean albedo values [Palle 2003]

Year	Mean	St. Err.	% error	Nights
	albedo	Mean		
1994	0.316	0.005	1.6	44
1995	0.319	0.007	2.2	29
1999	0.297	0.003	1.0	117
2000	0.310	0.003	1.1	105
2001	0.306	0.003	1.1	89
1994/1995	0.316	0.004	1.4	73
1999/2001	0.301	0.002	0.6	311

Figure 6. The Earth's irradiation by bright part (a) and the dark part (b) of moon's disk, and ratio (c) of Earth's irradiation with the Moon, irradiated by the Sun and the Earth at a wavelength of 550 nm for lunation in April 2003.

The variations of Earth's irradiation by Moonshine at wavelength variations from a northern tree ring density network," J. Geophys 550 nm with changing Moon's zenith angle and the calculation Res. D, vol. 106, pp. 2929-2941, 2001. results of the ratio of Earth's irradiation with Moonshine caused by O.W. Brown, J.W. Brown, R.H. Evans, "Calibration of advanced radiation of the Sun and the Earth are presented in Fig. 6 very high resolution radiometer observations," J. Geophys. Res., [Khokhlov, 2004]. The lobes in Fig. 6 show daily irradiation vol. 90, pp. 11667-11677. 1985. variations and their enveloping curve is describing lunar orbit J.E. Cole, R.G. Fairbanks, and G.T. Shen, "The Spectrum of hodograph during a lunation. The calculated image of the Moon Recent Variability in the Southern Oscillation: Results from a and that of the Earth, which one could see from the lunar surface, Tarawa Atoll Coral," Science, vol. 260, pp. 1790-1793, 1993. are shown in the lower part of Fig. 6c. The data for various zenith J.R. Christy, R.W. Spencer, W.D. Braswell, "MSU tropospheric angles fit into a smooth curve. The calculations of lunar surface temperatures: Dataset construction and radiosonde comparisons." radiance and irradiation of Earth's atmosphere at various heights by J. Atmos. Ocean Tech. vol. 17, 9, pp. 1153-1170, 2000. Moon show the complicated features of the variations. A part of P. Eriksson, C. Jimenez, D. Murtagh, G. Elgered, T. Kuhn, S. them is determined by the irradiation of lunar surface and depends Buhler, "Measurement of tropospheric/stratospheric transmission on phases of the Moon and the Earth. Short-period variations at 10-35 GHz for H₂O retrieval in low Earth orbiting satellite depend on Moon's zenith angle and Earth's atmosphere properties. links," Radio Science, vol. 38, 4, pp. 341-349, 2003. The amplitude of variations and the position of variations J. Esper, E.R. Cook, F.H. Schweingruber, "Low-F requency maximum is defined by lunar orbit hodograph position. The signals in long tree-ring chronologies for reconstructing past calculation of Moon radiance has shown that the periods between temperature variability," Science, vol. 295, 5563, 2250-2253, 3...8 and 25...29 days of a lunation are the most favorable 2002. moments for Moonshine observations. In these cases one should J. Hansen, R. Ruedy, J. Glascoe, Mki. Sato. "GISS analysis of choose the lunations with the minimal zenith angles of the Moon.

3. CONCLUSION

The common shortcoming of all the techniques is their coverage of not all the globe and difficulty of an account of daily variation.

Historical net. The results presented in Fig. 1 show the influence of meteorological stations distribution over the globe and strong Cambridge, United Kingdom and New York, NY, USA, 881pp. dependence of characteristics of large-scale trends on average P.D. Jones, "Hemispheric surface air temperature variations: A annual temperature determination method and the correct account of daily variations. Temperature must be measured not less than 4 1802, 1994. times a day for the reliable reproduction of trends at the regions P.D. Jones, T.J. Osborn, K.R. Briffa, C.K. Folland, E.B. Horton, with pronounced daily variations.

historic data are based upon important assumptions [Mann, 1998], time series," J. Geophys. Res. D, vol. 106, 4, pp. 3371-3380, 2001. a part of which has its own limitations and, strictly speaking, does V.N. Khokhlov, "Modelling the scattering by the lunar surface of not prove the historic data.

Satellites. The atmospheric correction of the satellite data in visual and near infrared range does not take into account the effects of K.B. Kidwell. 1998, NOAA polar orbiter data User's guide, water vapor and aerosols. Moreover, even when these effects are http://www2.ncdc.noaa.gov/docs/podug/cover.htm taken into account, considerable differences can be observed due to G. MacDonald, S.E. Koonin, "Earthshine and climate," The application of different programs, which use big aerosol optical thicknesses and zenith angles of more than 60 degrees for inclined path calculations. The spectral dependence of radiance and emissivity can cause essential change of the final thermodynamic centuries," Nature, vol. 392, 6678, pp. 779-787, 1998. temperature, whose recalculation into the air temperature is very L. Oolman. 2005, http://weather.uwyo.edu/upperair/sounding.html problematic. As satellite instruments are developed for daily E. Palle, P.M. Rodriges, P.R. Goode, J. Qui, V. Yurchyshyn, J. weather forecast, they are not calibrated with the accuracy that is Hickey, M-C. Chu, E. Kolbe, C.T. Brown, S. E. Koonin, "The necessary for climate study.

Earthshine. In spite of complexity of interpretation of Earthshine measurements, this inexpensive technique of climate global change investigations is promising.

4. ACKNOWLEDGEMENTS

This work has been carried out at S. I. Vavilov State Optical Institute. The authors wish to thank V.I. Ogurtsov for helpful discussions.

5. REFERENCES

R. Briffa, T.J. Osborn, F.H. Schweingruber, I.C. Harris, P.D. Jones, S.G. Shiyatov, E.A. Vaganov, "Low-frequency temperature

surface temperature change," J. Geophys. Res. D, vol. 104, pp. 30997-31022, 1999.

"IPCC, 2001: Climate Change 2001: The scientific basis. Contribution of Working Group I to the Third assessment report of the Intergovernmental Panel on Climate Change," [Houghton, J.T., Y. Ding, D.J. Griggs, M. Noguer, P.J. van der Linden, X. Dai, K. Maskell, and C.A. Johnson (eds.)], Cambridge University Press,

reanalysis and an update to 1993," J. Climate, vol.7, 12, pp.1794-

L.V. Alexander, D.E. Parker, N.A. Rayner, "Adjusting for Paleoclimate. Paleo data interpretation and their calibration on sampling density in grid box land and ocean surface temperature

the sun's radiation and of the solar radiation reflected by the earth," J. Opt. Tech., vol. 71, 11, pp. 724-730, 2004.

Observatory, vol. 112, pp. 59-60, 1992.

M.E. Mann, R.S. Bradley, M.K., Hughes, "Global-scale temperature patterns and climate forcing over the past six

earthshine project: Update on photometric and spectroscopic measurements," Adv. Space Res., 34, 2, pp. 288-292, 2004.

H.N. Pollack, H. Shaopeng, P.Y. Shen, "Climate change record in subsurface temperatures: A global Perspective," Science, vol. 282, 5387, pp. 279-281, 1998.

T.C Peterson, R.S. Vose, "An overview of the Global Historical Climatology Network temperature data base," Bull. Am. Meteorol. Soc., vol. 78, 12, pp. 2837-2849, 1997.

Y. Zhang. 1999, MODIS UCSB Emissivity Library http://www. icess.ucsb.edu/modis/EMIS/html/em.html