
Cross-Verification of Spatial Logistic Regression for Landslide Susceptibility Analysis: A Case 
Study of Korea 

 
S. Lee a,* 

 
aGeoscience Information Center, Korea Institute of Geoscience and Mineral Resources (KIGAM) 30, Gajeong-Dong, Yuseong-Gu, 

Daejeon, 305-350, Korea  - leesaro@kigam.re.kr 
 
 

Abstract - The aim of this study is to cross-verify of 
multiple logistic model at Korea using a Geographic 
Information System (GIS). Landslide locations were 
identified in the 3 study areas from interpretation of aerial 
photographs and satellite image, field surveys, and maps of 
the topography, soil type, forest cover and land cover were 
constructed to spatial data-sets. The factors that influence 
landslide occurrence, such as slope, aspect and curvature 
of topography, were calculated from the topographic 
database. Texture, material, drainage and effective soil 
thickness were extracted from the soil database, and type, 
diameter and density of forest were extracted from the 
forest database. Lithology was extracted from the 
geological database, and land cover was classified from the 
Landsat TM image satellite image. Landslide susceptibility 
was analyzed using the landslide-occurrence factors by 
multiple logistic regression models. For the verification 
and cross-verification, the result of the analysis was 
applied to study areas.  
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1. INTRODUCTION 
 

In Korea, frequent landslides often result in significant 
damage to people and property, the most recent having 
occurred in 1991, 1996, 1998, 1999 and 2002. In the study 
area, Boun, Janghung and Youngin in Korea, much damage 
was caused on these occasions. The reason for the landslides 
was heavy rainfall, and, as there was little effort to assess or 
predict the event, damage was extensive. Through scientific 
analysis of landslides, we can assess and predict landslide-
susceptible areas, and thus decrease landslide damage through 
proper preparation. In order to achieve this, landslide hazard 
analysis techniques were verified in the study area using 
multiple logistic regression models. 
 
A key assumption using this approach is that the potential 
(occurrence possibility) of landslides will be comparable to 
the actual frequency of landslides. First, the study area was 
selected. Then landslide occurrence areas were detected in the 
Boun area, Korea by interpretation of aerial photographs and 
field surveys. A map of recent landslides was developed from 
aerial photographs, in combination with the GIS, and this was 
used to evaluate the frequency and distribution of shallow 
landslides in the area. The factors such as altitude, slope, 
aspect and curvature from the topographic database, soil 
texture, material, drainage, effective thickness, and 
topography from the soil database, forest type, forest diameter, 
and forest density from the forest map, and land cover data 
from Landsat TM image were used. Using the detected 

landslide locations and the constructed spatial data sets, a 
landslide analysis method were applied and verified. For this, 
the calculated and extracted factors were converted to a 10m × 
10m grid (ARC/INFO GRID type). Using the detected 
landslide locations and the constructed spatial data-sets, a 
multiple logistic regression model was applied and landslide 
susceptibility map was made. Then, the susceptibility map was 
verified using existing landslide location. 
 
The first study area, Boun, lies between the latitudes 36 °25’ 
21’’ N and 36° 30’ 00’’ N, and longitudes 127° 39’ 36’’ E and 
127° 45’ 00’’ E, and covers an area of 68.43km2. The bedrock 
geology of the study area consists mainly of biotite granite. 
The landslides occurred where the maximum daily rainfall is 
407 mm. The second study area, Janghung lies between 
latitudes 37°43' N and 37°46' N, and longitudes 126°56' E and 
127°01' E, and covers an area of 40.74 km2. The study area is 
in the northwestern part of the Kyonggi gneiss complex, 
which is composed mainly of gneisses. In the study area, the 
landslides occurred where the maximum daily rainfall is 208.5 
mm. The third study area, the Youngin, lies between the 
latitudes 37.14° N and 37.19° N, and longitudes 127.11° E and 
127.23° E, and covers an area of 66 km2. The bedrock geology 
of the study area consists mainly of granite and gneiss. The 
landslides occurred where the maximum daily rainfall 
exceeded 114 mm, with a maximum hourly rainfall of 40 mm. 
 
In this study, GIS (Geographic Information System) software, 
ArcView 3.2 and ARC/INFO 8.1 NT version, and statistical 
software, SPSS 10.0 were used as the basic analysis tool for 
spatial management and data manipulation. 

 
2. SPATIAL DATABASE 

 
Identification and mapping of a suitable set of instability 
factors (thematic mapping) bearing a relationship with slope 
failures requires an a priori knowledge of the main causes of 
landslides (Guzzetti and others 1999). These instability factors 
include surface and bedrock lithology and structure, bedding 
altitude, seismicity, slope steepness and morphology, stream 
evolution, groundwater conditions, climate, vegetation cover, 
land-use, and human activity. The availability of thematic data 
varies largely, depending on the type, scale, and method of 
data acquisition. A digitized map of landslide boundaries was 
produced, and these digital data were input to the GIS. A 
vector-to-raster conversion was undertaken to provide a raster 
data of landslide areas. Maps relevant to landslide occurrence 
were constructed in vector-type spatial data sets using the 
ARC/INFO GIS software package. These included 1:5000-
scale topographic maps, 1:25000 or 1:50,000-scale soil maps, 
and 1:25000-scale forest maps. In the Janghung, 1:50,000-
scale soil map was used because there is no published 



1:25:000-scale soil map. A land-use map was extracted from 
Landsat TM satellite images having a resolution of 30 m. 
Contour and survey base points that had an elevation value 
read from the topographic map were extracted, and a Digital 
Elevation Model (DEM) was constructed. Using the DEM, the 
slope, aspect and curvature were calculated. The topographic 
type, texture, drainage, material, and thickness were acquired 
from a soil map. The type, diameter, age and density were 
obtained from forest maps, and land cover data was classified 
according to LANDSAT TM satellite images.  In the study 
areas, the data sets were was divided into a grid with 10 m × 
10 m cells. The Boun data set was composed of 555 rows by 
734 columns, so the total cell number is 407,370 and the cell 
number where landslides occurred is 107. The Janghung data 
set was composed of 555 rows by 734 columns, so the total 
cell number is 407,370 and the cell number where landslides 
occurred is 107. The Youngin data set was composed of 555 
rows by 734 columns, so the total cell number is 407,370 and 
the cell number where landslides occurred is 107.  

 
3. LOGISTIC MULTIPLE REGRESSION 

 
Logistic multiple regression allows one to form a multivariate 
regression relation between a dependent variable and several 
independent variables. A limitation of ordinary linear models 
is the requirement that the dependent variable is numerical 
rather than categorical. But many interesting variables are 
categorical in landslide analysis. The logistic multiple 
regression is easier to use than discriminant analysis when we 
have a mixture of numerical and categorical regressors, 
because it includes procedures for generating the necessary 
dummy variables automatically. Just like linear regression, 
logistic multiple regression gives each regressor a coefficient 
b1 that measures the regressor's independent contribution to 
variations in the dependent variable. But there are technical 
problems with dependent variables that can only take values 
of 0 and 1. 
 
The advantage of logistic multiple regression over simple 
multiple regression is that, through the addition of an 
appropriate link function to the usual linear regression model, 
the variables may be either continuous or categorical or any 
combination of both types. Moreover, when the dependent 
variable has only two groups, logistic multiple regression may 
be preferred over discriminant analysis that is also can use 
categorical data for several reasons. First, discriminant 
analysis relies on strictly meeting the assumptions of 
multivariate normality and equal variance-covariance matrices 
across groups-assumptions that are no met in many situations. 
Logistic multiple regression does not face these strict 
assumptions and is much more robust when these assumptions 
are not met, making its application appropriate in many more 
situations. Second, even if the assumptions are met, many 
researchers prefer logistic multiple regression because it is 
similar to regression. Both have straightforward statistical 
tests, the ability to incorporate nonlinear effects, and a wide 
range of diagnostics. For these and more technical reasons, 
logistic multiple regression is equivalent to two-group 
discriminant analysis and may be more suitable in many 
situations (Hair et al., 1998). 
 

In the present situation, the dependent variable is a binary 
variable representing the presence or absence of landslides. 
Quantitatively, the relationship between the occurrence and its 
dependency on several variables can be expressed as: 
 

 
p = 1 / (1 + e-z)                                                          (1) 

 
 
 where p is the probability of an event occurring. In the 
present situation, the p is the estimated probability of landslide 
occurrence. The p is estimated probabilities of landsliding 
based on the intrinsic properties only, and this we term 
susceptibility to landsliding. The probability varies from 0 to 1 
on an S-shaped curve and z is the linear combination. It 
follows that logistic multiple regression involves fitting to the 
data an equation of the form. 

 
 

z = b0 + b1x1 + b2x2 + … + bnxn                               (2) 
 
 

where b0 is the intercept of the model, the bi (i = 0, 1, 2, …, n)  
are the slope coefficients of the logistic multiple regression 
model and the xi (i = 0, 1, 2, …, n) are the independent 
variables (Dai and Lee, 2002). The linear model formed is 
then a logistic multiple regression of presence or absence of 
landslides (present conditions) on the independent variables 
(pre-failure conditions). 
  
Although logistic multiple regressions finds a "best fitting" 
equation just as linear regression does, the principles on which 
it does so are rather different. Instead of using a least-squared 
deviations criterion for the best fit, it uses a maximum 
likelihood method, which maximizes the probability of getting 
the observed results given the fitted regression coefficients. A 
consequence of this is that the goodness of fit and overall 
significance statistics used in logistic multiple regression is 
different from those used in linear regression.  
  
The decision process for logistic multiple regression is, as 
with all multivariate applications, setting the objectives is the 
first step in the analysis. Then the researcher must address 
specific design issues and make sure the underlying 
assumptions are met. The analysis proceeds with the 
derivation of the logistic function and the determination of 
whether a statistically significant function can be derived to 
separate the tow groups. The logistic multiple regression 
results are then assessed for predictive accuracy by developing 
a classification matrix. Next, interpretation of the discriminant 
function determines which of the independent variables 
contributes the most to discriminating between the groups. 
Finally, the logistic function should be verified with a holdout 
sample (Hair et al., 1998). 

 
4. APPLICATION AND INTERPRETING LOGISTIC 

MULTIPLE REGRESSION FOR LANDSLIDE 
SUSCEPTIBILITY MAPPING 

 
A key concept for understanding the tests used in logistic 
multiple regression is that of log likelihood. Usually, though, 
overall significance is tested using Model Chi-square, which is 



derived from the likelihood of observing the actual data under 
the assumption that the model that has been fitted is accurate. 
It is convenient to use -2 times the log (base e) of this 
likelihood (-2LL). The log likelihood value (-2LL) here is 
8418.480. Several criteria can be used to guide entry: greatest 
reduction in the –2LL values, greatest Wald coefficient. 
 
There are Wald statistics for each regressor in each model, 
together with a corresponding significance level. The Wald 
statistic has a chi-squared distribution, but apart from that it is 
used in just the same way as the t values for individual 
regressors in linear regression. 
 
In assessing model fit, several measures are available. Smaller 
values of the –2LL measure indicate better model fit. The 
goodness of fit measure compared the predicted probabilities 
to the observed probabilities, with higher values indicating 
better fit. The value for the single variable model is 8418.480. 
Next, three measures comparable to the R2 measure in 
multiple regression are available. The Cox and Snell R2 and 
Nagelkerker R2 measure operates which higher values 
indicating greater model fit. In our instance, the Cox and Snell 
value is .000 and the Negelkerke value is .096. 
 
Using the logistic multiple regression method, the spatial 
relationship between landslide-occurrence location and 
landslide-related factors was calculated. The statistical method 
used was logistic multiple regression analysis A statistical 
program was used and calculated the correlation of landslide 
to each factor. First all of the factors that were constructed in 
the database were considered. Then logistic multiple 
regression coefficients of the factors calculated. The 
coefficients of the logistic multiple regression model are 
estimated using the maximum-likelihood method. In other 
words, the coefficients that make the observed results most 
“likely“ are selected. Since the relationship between the 
independent variables and the probability is nonlinear in the 
logistic multiple regression model, an iterative algorithm is 
necessary for parameter estimation (Dai and Lee, 2002). There 
are positive association such as slope and negative association 
such as curvature. After interpretation, formulae (3) and (4), 
which predict the landslide-occurrence possibility, were 
created.  
 
 

z = (0.0262 × SLOPE ) + ( –0.0245 × CURVA ) + TOPOw 
+ TEXTUREw + MATERIALw + DRAINw + 
THICKw + TYPEw + DIAMETERw + DENSITYw + 
GEOLw + LANDUSEw – 33.173  (3)  

 
p = 1 / (1 + e-z) or p = ez  /  (1 + ez)                         (4)  

 
 
where Slope is  slope value; Curva is Curvature value; 
TOPOw, TEXTUREw, MATERIALw, DRAINw, THICKw, 
TYPEw, DIAMETERw, DENSITYw, GEOLw,  LANDUSEw 
are  logistic multiple regression coefficients; z is  parameter; 
and p is landslide-occurrence possibility.  
 
Using these formulae, a landslide susceptibility map was 
made. The logistic multiple regression analysis is performed 
by dividing the study area into a 5 m × 5 m size grid, and the 

factors were divided into a 5 m × 5 m, and converted to an 
ASCII file to use the statistical package. In the study area, the 
total cell number is 2,729,160 and the cell number where 
landslides occurred is 483. The distribution of the calculated 
the possibility is made to landslide susceptibility map. The 
value is classified by equal areas and grouped into five classes 
for easy interpretation - Very low (0.00000), low (0.00000 – 
0.00003), medium (0.00003 – 0.00010), high (0.00010 – 
0.00030), very high (0.00030 <). Also, using the formulae (3) 
and (4), the other study area, Youngin, was analyzed for cross-
verification of landslide susceptibility. The logistical multiple 
regression analysis is performed by dividing the study area 
and the factors. In the study area, the total cell number is 
2,633,346 and the cell number where landslides occurred is 
1,149. The distribution of the calculated possibility is shown 
as map. The value is classified by equal areas and grouped 
into five classes - Very low (0.0000), low (0.0000 - 0.0009), 
medium (0.0009 – 0.0033), high (0.0033 – 0.0083), very high 
(0.0083 <). 
 

5. CROSS-VERIFICATION OF LANDSLIDE 
SUSCEPTIBILITY MAPPING  

 
The landslide susceptibility analysis result verified using the 
landslide locations for the same study areas and cross-verified 
using the landslide locations of the others study areas. The 
verification method was performed by comparison of existing 
landslide data and landslide susceptibility analysis results for 
the Boun of the study area. The comparison results are shown 
as a line graph, with logistic multiple regression method at the 
case of success rate and prediction rate. The success rates 
illustrate how well the estimators perform with respect to the 
left side landslides used in constructing those estimators. The 
prediction rates, on the other hand, are used as measurements 
of how well the probability model and its estimators predict 
the distribution of future landslides. 
 
To obtain the relative ranks for each prediction pattern, the 
calculated index values of all cells in the study area were 
sorted in descending order. The above procedure also was 
adapted for the Janghung and Youngin of the study area by 
comparing the classes obtained with the distribution on the 
Janghung and Youngin of the study area. 
 
The success rate verification is from the landslide 
susceptibility analysis result verified in the Boun area using 
the landslide occurrence locations, for the logistic multiple 
regression methods. Therefore, strictly speaking, the success 
rate is not a suitable verification method. However, the 
success rate verification method needs information about the 
properties of analysis method, and checks the landslide 
susceptibility analysis calculation for major errors. It also 
needs to be tested against the prediction rate verification 
method. 

 
The success rate verification results are divided into classes of 
accumulated area ratio % according to the landslide 
susceptibility index value. In the case of Boun, the 90 to 100% 
(10%) class that highest possibility of landslide contains 
51.9% of the Boun area in success rate. A 0-20% class (20%) 
contain 71.4% and 0-30% class (30%) contain 86.3% of the 
Boun area. In the case of Janghung, the 90 to 100% (10%) 



class that highest possibility of landslide contains 55.5% of the 
Boun area in success rate. A 0-20% class (20%) contain 
77.8% and 0-30% class (30%) contain 92.5% of the study 
area. In the case of Youngin, the 90 to 100% (10%) class that 
highest possibility of landslide contains 43.5% of the Boun 
area in success rate. A 0-20% class (20%) contain 67.2% and 
0-30% class (30%) contain 83.7% of the study area. 
 
The prediction rate verification is from the landslide 
susceptibility analysis result verified in the Youngin area 
using the landslide occurrence locations that were unused in 
the calculation. Therefore, strictly speaking, the prediction rate 
is a true verification method. The prediction rate verification 
results are divided into classes with accumulated area % 
according to landslide susceptibility index value. In the case of 
Youngin ratio for Janghung and Boun, the 90 to 100% (10%) 
class that highest possibility of landslide contains 36.5% of the 
Janghung area and 36.7% of the Youngin area in prediction 
rate. In the case of Janghung ratio for Youngin and Boun, the 
90 to 100% (10%) class that highest possibility of landslide 
contains 29.3% of the Boun area and 38.0% of the Youngin 
area in prediction rate. In the case of Boun for Youngin and 
Janghung, the 90 to 100% (10%) class that highest possibility 
of landslide contains 29.0% of the Janghung area in prediction 
rate.  

 
6. CONCLUSION AND DISCUSSION  

 
Landslides are among the most hazardous natural disasters. 
Government and research institutions worldwide have 
attempted for years to assess the landslide hazard and risk and 
to show its spatial distribution. In this study, a verification of 
probabilistic approach to estimating the susceptible area of 
landslides using GIS is presented. For the landslide 
susceptibility analysis, landslide location was detected using 
aerial photographs and a landslide-related database was 
constructed for the study area of Boun, Janghung and 
Youngin, Korea.  
 
For the landslide susceptibility analysis, multiple logistic 
regression model, was applied and verified for the study area 
of Youngin, Korea, using the spatial data-sets. Using the 13 
factors, likelihood relation model was applied to analyze the 
landslide hazard. Then, the results were verified by calculating 
the correlation observed between landslide occurrence 
location and the predicted occurrences. Generally, the 
verification results showed satisfactory agreement between the 
susceptibility map and the existing data on landslide location.  
 
In comparison between success rate and prediction rate, 
success rate showed the better accuracy than prediction rate 
for all cases. In the Janghung case for success rate show the 
best accuracy among the all cases in success rate. Among the 
all cases, Janghung rate for Boun showed the best accuracy. 

 
In this study, only the susceptibility analysis was performed, 
because the small area studied did not allow us to determine 
the distribution of rainfall. However, if data on factors causing 
the landslides, such as rainfall, earthquake shaking, or slope 
cutting, exist, then the possibility analysis could also be done. 
In particular, if the data could be combined with a 
hydrological model, a more accurate analysis could be done. If 

the factors relevant to vulnerability of buildings and other 
property were available, risk analysis could also be done. 
Landslide susceptibility maps are of great help to planners and 
engineers for choosing suitable locations to implement 
developments. These results can be used as basic data to assist 
slope management and land-use planning. 
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