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Abstract – Synthetic Aperture Imaging Radiometers (SAIR) 
are powerful sensors for high-resolution observations of the 
Earth at low microwaves frequencies. This contribution 
extends the concept of “band-limited resolving matrix” for 
retrieving brightness temperature maps from complex 
visibilities measurements to the case of the processing of full-
polarimetric data.  
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1. INTRODUCTION 
 

The SMOS (Soil Moisture and Ocean Salinity) space mission is an 
ESA (European Space Agency) led project aimed at global 
monitoring of surface soil moisture and sea surface salinity from 
L-band space borne observations (Kerr, 2001). It will be the first 
attempt to apply to remote sensing of the Earth surface, the 
concept of imaging interferometric radiometry by aperture 
synthesis, initially developed for radio astronomy. 

 

 
 

Figure 1.  Artist view of the SMOS project. 
 
Interferometer measurements, also called complex visibilities, are 
obtained by cross-correlating the signals collected by pairs of 
spatially separated antennae which have overlapping fields of 
view. Visibility samples are related to the radiometric brightness 
temperature of the observed scene by a spatial Fourier-like 
integral. However, due to the angular extent of the target, the 
conditions, which typically apply for radio astronomy 
observations, are no longer valid for Earth remote sensing. As a 
consequence, the standard imaging algorithms developed by radio 
astronomers are not convenient for retrieving brightness 
temperatures of the scene from complex visibilities. Moreover, the 
corresponding inverse problem is often ill-posed unless a 
regularizing constraint is introduced in order to provide a unique 
and stable solution to the problem (Lannes, 2001). The finite 
physical size of a synthetic antenna results in a truncation of the 
visibility samples above a certain spatial frequency. As we can see 
in Fig. 1, the Y-shaped array selected for SMOS is fitted with 72 

equally spaced elements. This kind of array leads to complex 
visibilities sampled over a hexagonal grid inside a star-shaped 
window in the Fourier domain. This band-limited property is 
taken into account for regularizing the inverse 
problem (Lannes, 1996) and the relationship between complex 
visibilities and brightness temperatures is rephrased in the Fourier 
domain: the unknowns are the Fourier components of the scene 
brightness temperature. Thanks to spatial redundancies, the 
number of these Fourier components inside the star-shaped 
window is smaller than the number of visibility samples: the over-
determined regularized inverse problem is solved in the least-
squares sense. This contribution extends the concept of the 
"resolving matrix" (Anterrieu, 2004) to the case of the processing 
of full-polarimetric data. To support the theory and to illustrate the 
performances of this imaging method, numerical simulations are 
presented within the frame of the SMOS project. 
 

2. THEORETICAL FRAMEWORK 
 
SAIRs devoted to Earth observation measure the correlation 
between the signals collected by pairs of spatially separated 
antennas Ak and Al which have overlapping fields of view, 
yielding samples of the visibility function V, also termed complex 
visibilities, of the brightness temperature map T of the observed 
scene. 
 
2.1.  Direct problem 
The relationship between T and V is given by the spatial Fourier-
like integral (Ruf, 1988): 
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The components ξ1 = sinθcosφ and ξ2 = sinθsinφ of the angular 
position variable ξ = (ξ1,ξ2) are direction cosines (θ and φ are the 
traditional spherical coordinates), ukl is the spatial frequency 
associated with the two antennas Ak and Al (namely, the spacing 
between the antennas normalized to the central wavelength of 
observation λo = c/fo), Fk and Fl are the voltage patterns of the 
antennas, r~ is the fringe-wash function which accounts for 
decorrelation effects, t = uklξ/fo is the spatial delay and 
fo = 1.415 GHz is the central frequency of observation. 
Denoting by L the number of antennas of the interferometric 
array, the number of complex visibilities provided by the 
interferometer is equal to L(L-1)/2 when accounting for the 
hermitian property of (1). However, the list of spatial frequencies 
ukl is not necessarily non redundant since two different pairs of 
antennas may lead to the same spatial frequency. 
Since SAIR have limited dimensions, the spatial frequencies ukl 
sampled by an interferometer are confined to a limited region of 
the Fourier domain, the so-called experimental frequency 
coverage H. Moreover, in the case of SMOS the visibility samples 



are obtained from raw data inside a star-shaped window H over an 
hexagonally sampled grid Gu in the Fourier domain. 
For computational purposes, numerical quadrature is used to 
represent integral (1) as a summation over N² integrand samples, 
the N² pixels of the spatial grid Gξ which is the dual grid of Gu. 
The number of pixels in the grids Gu and Gξ is chosen in such a 
way that the Shannon criterion is satisfied and the numerical 
quadrature is sufficiently accurate (Anterrieu, 2004). 
 
2.2.  Inverse problem 
The inverse problem aims at inverting the discrete version of 
relation (1) to retrieve T from V, i.e. solving the linear system: 
 

GT = V (2)
 
where G is the discrete linear modeling operator from the object 
space E into the data space F describing the basic relation (1). 
Since the direct problem is stated via an integral equation, the 
inverse problem does not usually have a straightforward solution. 
Moreover, since the dimension of the object space E (here the N² 
pixels used to sample T) is often larger than the dimension of the 
data space F (the L(L-1)/2 samples of V), the linear system (2) is 
an under-constrained problem with multiple solutions for T. 
Consequently, the minimum of the least-square criterion 
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which is also the solution of the normal equation G*G T = G* V, is 
therefore not unique because the square matrix G*G is singular. 
Thus, according to the definition given by Hadamard (Bertero, 
1998), the inverse problem is ill-posed and has to be regularized in 
order to provide a unique and stable solution for T. 
 
2.3.  Band-limited regularization 
Referring to a physical concept, namely the limited resolution of 
SAIR, a recently proposed approach (Anterrieu, 2004) is to find 
the temperature map Tr which has its Fourier transform confined 
to the experimental frequency coverage H. This band-limited 
solution realizes the minimum of the constrained problem 
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where PH is the projector onto the subspace EH (of E) of the H-
band limited functions. The unique solution of (4) is given by: 
 

Tr = U* Z A+ V (5)
 
where A+ = (A*A)-1A* is the More-Penrose pseudo-inverse of the 
rectangular matrix A = G U* Z, U is the Fourier transform 
operator and Z is the zero-padding operator beyond H. 
 
2.4.  Extension to the four Stokes parameters 
When taking into account the full-polarimetric mode of the 
instrument, relation (1) becomes (Waldteufel, 2002): 
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where Fkl is a 4×4 matrix involving the co-polar and cross-polar 
voltage patterns on ports X and Y of the antennas Ak and Al. 
Shown in Fig. 2 are examples of such co-polar and cross-polar 
voltage patterns for an airborne demonstrator with 10 antennas. 
 

 
 

Figure 2.  Amplitude of co-polar (top, Rx and Ry) and cross-polar 
(bottom, Cx and Cy) antenna gains. The maximum value of the 
cross-polar gains is here 25 dB below that of the co-polar ones. 

 
Consequently, the new modeling matrix G is 4×4 = 16 times 
larger than the previous one. Indeed, the dimension of the new 
data space F is 4 times larger than the previous one because now 
the data are V = [V1, V2, V3, V4]. Likewise, the dimension of the 
new object space E is 4 times larger than the previous one because 
now the unknown maps are T = [T1, T2, T3, T4]. As we can see in 
Fig. 3, depending on the level of the coupling between the co-
polar and cross-polar voltage patterns, this new G matrix can 
exhibit a block-diagonal structure, or not. 
 

 
 

Figure 3.  Two modeling matrices G with coupling level 
25 dB (bottom) or only 10 dB (top). 

 
3. NUMERICAL SIMULATIONS 

 
Simulations have been performed for a Y-shaped array equipped 
with L = 10 antennas. The number of complex visibilities is 



therefore equal to L(L-1)/2 = 45, that is to say 90+1=91 real 
numbers per Stokes parameter when adding one measurement for 
the zero spacing in the modeling of the instrument. The dimension 
of the hexagonally sampled grids Gu and Gξ has been fixed to 
N²=256 for each Stokes parameter. The size of the real-valued 
matrix G is therefore 364×1024. Simulations have been performed 
for the two modeling matrices G shown in Fig. 3. In both case, the 
reconstruction have been performed with the full modeling matrix 
and with only the four diagonal blocks 
The brightness temperature maps T = [T1, T2, T3, T4] used for  
these simulations are shown in Fig. 4 at their highest level of 
resolution and in Fig. 5 at the resolution level of the instrument 
and damped with a Hanning window (Anterrieu, 2002) Tw = T *W. 
 

 
Figure 4.  Brightness temperature maps of the four Stokes 

parameters at their highest level of resolution. 
 
 

 
Figure 5.  Brightness temperature maps of the four Stokes 

parameters at the level of resolution of the instrument. 

Complex visibilities V = [V1, V2, V3, V4] have been first simulated 
from the high-resolution maps T = [T1, T2, T3, T4] shown in Fig. 4 
for a modeling matrix G with a coupling level equal to 25 dB. The 
reconstructed brightness temperature maps Tr = [Tr1, Tr2, Tr3, Tr4] 
obtained with the full modeling G matrix are shown in Fig. 6 at 
the resolution level of the instrument and damped with the 
Hanning window W. These maps should be compared to those in 
Fig. 5. The corresponding error maps ∆T = Tr – Tw, are shown in 
Fig. 7 and the rms errors are respectively equal to 0.55 K, 0.50 K, 
0.30 K and 0.04 K. When the reconstruction is performed with 
only the four diagonal blocks of the modeling G matrix, i.e. when 
coupling is ignored, these numbers become 0.99 K, 1.25 K, 2.92 K 
and 0.86 K, respectively. 
 

 
Figure 6.  Reconstructed maps when the full modeling G matrix is 

taken into account with a coupling level equal to 25 dB. 
 
 

 
Figure 7.  Error maps of the reconstructed maps shown in Fig. 6. 

 



Complex visibilities V have been next simulated from the same 
high-resolution maps T shown in Fig. 4 but now for a modeling 
matrix G with a coupling level equal to 10 dB. The reconstructed 
brightness temperature maps Tr obtained with the full modeling G 
matrix are shown in Fig. 8 at the resolution level of the instrument 
and damped with the Hanning window W. These maps should be 
compared to those in Fig. 5. The corresponding error maps 
∆T = Tr – Tw, are shown in Fig. 9 and the rms errors are 
respectively equal to 0.95 K, 0.50 K, 0.64 K and 0.10 K. When the 
reconstruction is performed with only the four diagonal blocks of 
the modeling G matrix, i.e. when coupling is ignored, these 
numbers become 13.2 K, 11.9 K, 20.3 K and 2.6 K, respectively. 
 
 

 
Figure8.  Reconstructed maps when the full modeling G matrix is 

taken into account with a coupling level equal to 10 dB. 
 
 

 
Figure 9.  Error maps of the reconstructed maps shown in Fig. 8. 

 

4. CONCLUSION 
 
This contribution has extended the concept of the "resolving 
matrix" to the case of the processing of full-polarimetric data 
within the frame of the SMOS project. It has been shown that the 
reconstruction process cannot be reduced to four independent ones 
(of smaller size) for every Stokes parameters, even when the co-
polar and cross-polar coupling is very low. The overall robustness 
of the “resolving matrix” approach is preserved when retrieving 
the four Stokes components of the brightness temperature by 
solving a linear system which is 16 times larger than the standard 
one. Thus, the regularization principle does not suffer from any 
size effect and, to a certain extent, from the coupling level. Of 
course, these first concluding comments have to be confirmed 
with simulations conducted for the spatial instrument with 72 
antennas (the size of the real-valued full-polarization modeling 
matrix G is therefore 20452×65536). 
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