
EDGE DETECTION IN MULTISPECTRAL IMAGERY VIA MAXIMUM ENTROPY 
 

N.H. Younan*, K. Ponnala, and N. Alapati 
 

Department of Electrical and Computer Engineering, Mississippi State University, Mississippi State, MS 39762 – 
younan@ece.msstate.edu, (kp74, nca3@msstate.edu) 

 

 
* Corresponding author 

Abstract - In this paper, a modern spectral analysis 
method, based on the maximum entropy, for edge 
detection in multispectral imagery is presented. This 
technique is shown to be simple and easy to implement. 
Due to its distinct features, the maximum entropy is 
proven advantageous when compared to other 
conventional multidimensional edge detection methods. 
This method does not involve a smoothing filter and 
hence there would be no blurring of edges in the 
processing. Moreover, the problem dealing with sharp 
corners is eliminated due to the absence of any gradient 
operations. The application of this method to 
multispectral imagery to mainly extract roads and 
highways is shown to be robust in terms of its simplicity 
and performance evaluation. 
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1.  INTRODUCTION 
 
Multispectral image analysis has been of interest to the 
remote sensing community for many years due to its wide 
applications in areas such as forestry, oceanography, water 
resources, agriculture, roadmap analysis, and environmental 
monitoring. In many cases, such applications are based on 
extracting information by detecting the edges in 
multispectral imagery. Thus, the process of edge detection is 
of prime importance in remote sensing technology [1]. Its 
importance has been observed in automated pattern 
recognition systems used for target identification, change 
detection, and classification.  
 
Edges in an image can be defined as the abrupt 
discontinuities in the intensity values of the pixels in the 
image. Moreover, edges play a vital role in human 
perception and vision. The information derived from the 
edges of an image forms the basis for automated image 
analysis. The importance of edge detection in various fields 
has resulted in an exhaustive research in recent years [2-4].  
 
Traditional edge detection schemes are based upon 
differential operators. The two most popular differential 
operators are the Laplacian operator and the directional 
derivative operator [5]. In general, these operators are very 
efficient due to their time-invariance property with respect to 
translations and rotations of the image plane.  However, their 
efficiency is not well preserved once they are subjected to 
the analysis multispectral images.  
 

In this paper, a spectral analysis method, based on the 
maximum entropy, for edge detection in multispectral 
imagery is presented.. Due to its distinct features, the 
maximum entropy is proven advantageous when compared 
to other conventional multidimensional edge detection 
methods. This method does not involve a smoothing filter 
and hence there would be no blurring of edges in the 
processing. Moreover, the problem dealing with sharp 
corners is eliminated due to the absence of any gradient 
operations. The application of this method to multispectral 
imagery to mainly extract roads and highways is shown to be 
robust in terms of its simplicity and performance evaluation. 
 

 
2. METHODOLOGY 

 
2.1  MAXIMUM ENTROPY  
Introduced first by Burg, the maximum entropy spectral 
estimation (MESE) is established based on an explicit 
extrapolation of a finite known autocorrelation function 
(ACF) for the unknown samples [6]. The extrapolation 
process is performed such that the random process 
characterized by the extrapolated ACF is the most random 
one. The randomness is measured by evaluating the entropy 
of the random process. The MESE produces a minimum bias 
solution because this criterion imposes the fewest constraints 
on the unknown time series by maximizing its randomness. 
If a Gaussian random process is assumed, the corresponding 
power spectral density can be represented by [7]:  
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where {a[1], a[2], …, a[p], σ2} are obtained by solving the 
Yule-Walker equations from a known ACF samples. 
 
2.2  2-D MAXIMUM ENTROPY SPECTRAL 
ESTIMATION 
The evaluation of the 2-D MESE is not a simple extension of 
the 1-D MESE due its the non-linear formulation [7]. 
Various algorithms have been used for obtaining the power 
spectral density estimate of a 2-D data based on the 
maximum entropy method [8-11].  However, most of the 
algorithms are computationally inefficient and convergence 
is not always guaranteed. Due to the utilization of the fast 
Fourier transformation (FFT), the algorithm proposed by 
Lim and Malik is implemented in this study [12]. This 
iterative algorithm is computationally simple to implement.   



The two-dimensional autocorrelation function ),( 21 nnRx  
is initially evaluated for the given 2-D data.  A unique 

estimate of the power spectrum of the data, ),(ˆ
21 ωωxP  

can be calculated by expressing the power spectrum, 
),( 21 ωωyP , as:  
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It can be observed from Equation (3) that ),( 21 nnRy  can 

be directly obtained from ),( 21 nnλ via Fourier 

transformation. Note also that ),( 21 ωωyP  is the unique 

maximum entropy power spectral estimate if and only if 
0),( 21 =nnλ  and ),(),( 2121 nnRnnR xy = over 

the entire two-dimensional space. Based upon this criterion, 
an iterative algorithm is performed. For an initial estimate of 

),( 21 nnλ , an estimate for ),( 21 nnRy is obtained and 

this estimate is corrected by comparing it with the initial 
),( 21 nnRx . The updated ),( 21 nnRy is used to obtain a 

 new ),( 21 nnλ . This iterative process is repeated until a 

convergence is reached. The resulting Lagrange’s 
coefficients, ),( 21 nnλ , are used to evaluate the 2-D 

MESE via [7] 
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3. EDGE DETECTION PROCESSING 

 
The entire process of the edge detection scheme is 
represented as a flow chart in Figure 1. In general, 
remote sensing images are usually corrupted with high 
frequency noise. Therefore, the images are passed through a 
low pass filter in order to eliminate high frequency noise. 
The reduction of high frequency noise is one of the most 
critical steps in the process of edge detection. An inefficient 
low pass filtering may cause the edges in the image to be 
blurred. A Gaussian low pass filter with an optimal width is 
used as a pre-processing tool. The width of the Gaussian 
filter is chosen such that the noise removal is maximized 
while minimizing the blurring of the edges in the image. 

 
 
Figure 1: Flow chart for the MESE edge detection technique 

for multispectral images 
 
The pre-processed image is then divided into sub-images 
based upon a chosen size. The selection of the size of the 
sub-image depends on various factors. For very high- 
resolution images, a sub-image size can be chosen relatively 
smaller than that in the case of low- resolution images. The 
increase in a sub-image size may reduce the probability of 
detecting any false edges, but at the cost of reducing the 
quality of the edge map. The final edge map appears more 
‘blocky’ when the sub-image size is very large. 
 
Each sub-image is then processed separately. Since the 
images under consideration are multispectral RGB images, 
each sub-image consists of three bands, red, green, and blue. 
Therefore, each sub-image can be further separated into three 
layers. The PSD estimate of each layer of the sub-image is 
evaluated individually using the 2-D MESE algorithm. The 
resulting PSD estimate is subject to proper analysis and a 
decision criterion is adapted to classify the sub-image as an 
edge or a non-edge. The design of a proper decision criterion 
is an important step in this process.  
  
The edge can be considered as a very high frequency feature 
of an image. Whenever an edge is present in any sub-image, 
the energy of its spectrum is concentrated in the higher 
frequency areas. In a similar manner, for a non-edge sub- 
image, the spectral energy is concentrated in the lower 
frequency areas. This distinctness in the power spectra of an 
edge sub-image and a non-edge sub-image can be a good 
metric to distinguish one from the other. The resulting 2-D 
MESE is observed for all the three layers of the sub-image. 
The sub-image is labeled as an edge if the energy of the 
power spectrum of at least one layer of the sub-image is 
concentrated in the high frequency region and vice-versa. 
Figure 2 represents the decision criterion. 
 

 
Figure 2:  Decision criterion for the MESE edge detection 

technique for multispectral images 



The entire multispectral image is subject to similar 
classification and a final labeled output image is obtained. 
The obtained binary output image consists of some isolated 
false alarms, which can be eliminated by implementing 
certain morphological processing techniques on the edge 
map. Consistent erosion followed by a suitable dilation 
eliminates most of the false alarms in the edge map there by 
enhancing the quality of the edge map. 

4. EXPERIMENTAL RESULTS 

A multispectral remotely sensed RGB color image consisting 
of roads and highways is considered to test the performance 
of the designed 2-D MESE edge detector. The test image is 
obtained from the NASA web site [21] and is illustrated in 
Figure 3. 

 

Figure 3: Input multispectral RGB image [21] 

Typical PSD estimates obtained using the 2-D MESE of sub 
-images containing edges and non-edges are shown in 
Figures 4 and 5 respectively. It can be clearly observed from 
these figures that the energy of the power spectrum is 
concentrated in the higher frequency areas for the edge sub-
image, while the majority of the signal energy is 
concentrated in the low frequency areas for the non-edge 
sub-image. This distinction in the energy concentration in 
lower and higher frequencies represents an excellent basis 
for classifying edges from non-edges.  

The final edge map is obtained by implementing the 
designed 2-D MESE on the given input image as shown in 
Figure 6. It can be observed that all the prominent edges are 
detected quite accurately. The weak edges, however, are 
detected less efficiently. From Figure 6, it can be observed 
that the intersection of the roads is clearly detected. Finally, 
morphological processing techniques, such as dilation, 
erosion, etc, are implemented as post-processing tools to 
enhance the edge map by reducing some of the false alarms 
in the original edge map, as illustrated in Figure 7. 
 
The algorithm is also tested by passing other RGB 
mutispectral images having different resolutions. The 
resulting edge map outputs are shown in Figure 8. The 
performance and efficiency of the 2-D MESE edge detector 
are statistically measured by calculating the probability of 

detection (PD) and probability of false alarm (PFA). The 
results are compared with the ones obtained from 
conventional edge detectors (Laplacian and directional 
derivative). This is ahown in Table I. It can be observed that 
the 2-D MESE edge detector outperformed the conventional 
edge detectors by a significant margin. However, the 
efficiency of the MESE edge detector depends upon the 
resolution of the image. 

 
 

 
Figure 4:  2-D MESE for an edge sub-image 

 

 
Figure 5:  2-D MESE for a non-edge sub-image 

 
 

  
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 6: Final edge map of the input image (Zoomed out 
insight of the intersection) 



 
  
 
 
 
 
 
 
 
 

 
 
 
 
 

Figure 7: Labeled binary output image obtained after 
morphological processing            

  
 
 

Table I: Performance comparison 
 

Laplacian Directional 
Derivative 
Operator 

MESE  

PD PFA PD PFA PD PFA 
Image 1 
 

0.35 0.75 0.45 0.70 0.60 0.35 

Image 2 
 

0.50 0.60 0.50 0.60 0.75 0.20 

Image 3 
 

0.40 0.60 0.50 0.65 0.70 0.25 

 
. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 8:  Multispectral input images [21] and their 
corresponding labeled output  

 

5. CONCLUSION 

 
A 2-D maximum entropy spectral estimation method is 
implemented and efficiently applied to detect the edges of 
multispectral images. Preliminary results indicate that 

prominent edges in multispectral imagery are detected more 
efficiently when compared to weaker edges detection. 
However, by taking a proper sub-image size, the weak edges 
can also be detected efficiently. It is also observed that the 
efficiency of the 2-D MESE edge detector depends on the 
resolution of the images. The edge detection algorithm works 
well when a low-resolution image is used. Proper 
morphological image processing techniques must be applied 
to reduce the false alarms and thereby enhancing the final 
edge map. In addition, a statistical performance comparative 
study with conventional methods (Laplacian and directional 
derivative), in terms of probability of false alarm and 
probability of detection, clearly illustrates the robustness of 
the presented method.  
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