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Abstract – The signal recorded by the sensor contains 
information relative both to the atmosphere and the surface. 
Atmospheric correction is necessary to extract the surface 
reflectance required within biophysical algorithms used to 
estimate canopy characteristics. Aerosol characteristics are the 
most difficult to evaluate because they vary rapidly with time 
and space. The objective is to develop an autonomous aerosol 
correction method exploiting the information content in 
MERIS top of atmosphere signal. We propose to use 13 
MERIS bands to estimate the aerosol optical thickness, 
training a dedicated neural network over a database made of 
radiative transfer model simulations (SMAC, SAIL, 
PROSPECT). 
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1. INTRODUCTION 
 

The atmosphere affects strongly the reflectance signal as recorded 
by sensors aboard satellite platforms. Atmospheric correction is 
thus mandatory to get top of canopy reflectance values from which 
a number of surface characteristics could be derived. The radiative 
transfer in the atmosphere depends both on absorption and 
scattering processes. 
 
The atmospheric pressure at the surface, which is known with a 
sufficient accuracy from the surface elevation or from main 
Meteorological Organizations such as ECMWF, allows 
characterizing absorption effects due to oxygen and carbon 
dioxide (relatively well mixed gases) and Rayleigh scattering.  
Ozone, water vapour and aerosols pose a problem varying rapidly 
and strongly with space and time. But the organizations also 
provide reliable estimates of water vapour at very coarse 
resolution. And, dedicated sensors such as TOMS (Mc Peters and 
al., 1998) allow getting a good estimate of the total ozone content. 
In addition, the most recent sensors such as MODIS and MERIS 
have specific bands dedicated to atmospheric water even ozone 
content estimations. Unfortunately, no instrument provides 
routinely sufficiently accurate estimates of aerosol characteristics 
exhaustively over the Earth’s surface and at the desired temporal 
and spatial resolution.  
 
Current aerosol correction methods are mainly based on the Dense 
Dark Vegetation (DDV, Kaufman, 1989) concept. It consists in 
identifying dark pixels in the image characterized by very low top 
of canopy reflectance values for the shorter wavelengths where 
aerosol contribution to the reflectance at the top of the atmosphere 
is the largest. The use of empirical relationships between the top 
of canopy reflectance in the shorter wavelengths and that at longer 
wavelengths (SWIR), where aerosol effects are weak, permits to 
increase the number of targets. This is the basis of the MODIS 

aerosol correction (Kaufman and al., 1997) and that developed for 
VEGETATION (Berthelot and Dedieu, 2000). 
In the case of MERIS and SeaWiFS where no SWIR band is 
available, the BAER method was proposed (Von Hoyningen-
Huene and al., 2002). The surface reflectance is represented as the 
mixture of typical vegetation and bare soil surfaces, the vegetation 
fraction being derived from a vegetation index. Then, the aerosol 
optical thickness and characteristics are iteratively varied to 
simulate the top of atmosphere reflectance thanks to LOWTRAN 
model (Kneizys and al., 1989). 
Rather than using the spectral variation of the signal, alternative 
methods have been developed exploiting the directionality of the 
reflectance as observed by POLDER (Deuzé et al., 2003), ATSR 
(North and al., 1999) or MISR (Martonchik and al., 1998) sensors. 
 
The objectives of this paper are to propose an autonomous 
atmospheric correction method based on the spectral variation of 
the signal. The MERIS sensor provides a good spectral sampling 
within the visible and near infrared domains. The exploitation of 
the spectral information as observed from MERIS should 
hopefully allow unravelling the atmosphere from the surface 
effects. The method proposed here is based on the training of 
neural networks over a learning data base made of radiative 
transfer model simulations.  
In the following, we will first recap the main MERIS features, the 
ground data and the MODIS aerosol products. Then we will 
describe the method used with emphasis on the learning data base 
and design of the neural network architecture. Finally, the method 
will be evaluated over an extensive data set made of AERONET 
aerosol characteristics measurements and a comparison with the 
algorithm implemented on MODIS will be achieved. 
 

2. AERONET, MERIS AND MODIS DATA 
 
2.1 The AERONET network 
AERONET is a network of automated sun-photometers (Holben 
and al., 1998) measuring the incoming radiation in a number of 
directions and bands (1020, 870, 670, 500, 440, 380 and 340nm) 
during the daily time course. The aerosol optical thickness is thus 
computed from these measurements for the set of wavebands 
available after a number of tests to check the reliability of the data.  
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Figure 1. Location of the AERONET validation sites. 



Eleven AERONET sites were used for this validation exercise. 
They include a wide range of situations, both in latitude, longitude 
(figure 1), date, distance to the sea and surface conditions. The 
optical thickness at 550nm was estimated by interpolating the 
actual AERONET AOTs thanks to the Angström power law. 
 
2.2 The MERIS sensor and available data  
MERIS aboard the ENVISAT polar sun-synchronic platform is 
acquiring images since 2002 (Rast et al., 1999). It measures the 
radiance from 800 km altitude in 15 wavebands in the visible and 
near infrared domain (Table A). The field of view is limited to 
±34° providing a revisit frequency around 3 days at the equator. 
The original spatial resolution called full resolution (FR) is around 
300 m while the reduced resolution (RR) corresponds to a pixel 
size close to 1.2 km. The MERIS products used in this study are 
level 1b, i.e. calibrated and geo-referenced radiance values. In 
addition, the 3 angles defining the view and illumination geometry 
are also available. 

Table A. Characteristics of the 15 MERIS bands (nm). 

Centre Width Potential Applications   
412.5 10 Yellow substance and detrital pigments 
442.5 10 Chlorophyll absorption maximum   
490 10 Chlorophyll and other pigments   
510 10 Suspended sediment, red tides   
560 10 Chlorophyll absorption minimum   
620 10 Suspended sediment   
665 10 Chlorophyll absorption and fluo. reference  
681.25 7.5 Chlorophyll fluorescence peak  
708.75 10 Fluo. Reference, atmospheric corrections  
753.75 7.5 Vegetation, cloud  
760.62 3.75 Oxygen absorption R-branch   
778.75 15 Atmosphere corrections    
865 20 Vegetation, water vapour reference   
885 10 Atmosphere corrections    
900 10 Water vapour, land   

 
During year 2002 and 2003 and the early 2004, 97 level 1b 
MERIS images were acquired over the 11 AERONET sites. They 
were mainly made of RR products, although 9 scenes were 
available at the FR. All the scenes corresponded to available and 
apparently valid AERONET measurements of the optical 
thickness. For each MERIS image, a 20×20 km² window centred 
on the sun-photometer was extracted. 
 
2.3 MODIS aerosol products 
MODIS (MODerate Imaging Spectrometer) aerosol data were 
downloaded from the on line Data Gateway web site 
(http://delenn.gsfc.nasa.gov). MODIS aboard the Terra satellite 
platform has a crossing time at descending node similar to that of 
MERIS. The product used is the AOT at 550nm at a resolution of 
5 km of side pixels for a synthesis period of 5 minutes and 
calculated within the extended DDV algorithm as seen in the 
introduction. However, only 31 dates were available from the 
original list of 97. The data extracted were corresponding to a 
window of 20 x 20 km² such as in the MERIS case and also the 
same process with larger pixels will be applied to get an 
estimation of the AOT at 550 nm over the same AERONET sites. 
 

 
3.  ESTIMATION OF AEROSOL OPTICAL THICKNESS 

USING NEURAL NETWORKS 
 
3.1 Overview of the method 
Neural networks (NN) are recognized as universal interpolators as 
demonstrated by Leshno et al. (1993). This capacity will be 
exploited to relate the top of atmosphere reflectance data to the 
corresponding aerosol characteristics. This was already used with 
success in remote sensing in a number of studies (Danson et al., 
2003). Most of the efforts in training a neural network consist in 
generating a proper learning data base. The learning data base 
should sample all the surface and atmosphere conditions that can 
be observed from MERIS. Ideally, the training data base should 
therefore be made of MERIS observations that are paired with 
accurate ground (AERONET) measurements of the aerosol optical 
thickness (AOT). However, because of the number of 
configurations to be used, and the possible errors in AERONET 
and MERIS data such as cloud occurrence or malfunctioning, it is 
often preferred to use physical radiative transfer model 
simulations. 
 
Top of atmosphere reflectance data as measured by MERIS are 
simulated by coupling models describing the radiative transfer at 
the surface (soil, vegetation) and in the atmosphere. The top of 
canopy reflectance can be simulated thanks to the combination of 
a canopy radiative transfer model that accounts for the canopy 
structure and the illumination and observation geometry. This 
canopy radiative transfer model needs as input a description of the 
leaf optical properties as well as soil background reflectance. 
The PROSPECT model (Jacquemoud and Baret, 1990) with the 
updated specific absorption coefficients proposed by Fourty and 
Baret (1997) provides a good description of the leaf reflectance 
and transmittance with a limited number of input variables. Ten 
reference soil spectra are used from a data base available at INRA 
Avignon representing a large variation of soil types, moisture, 
roughness and geometrical configurations (Liu and al., 2003). In 
addition, snow and water surfaces were also included to represent 
these situations that are not exceptional. 
The SAIL radiative transfer model (Verhoef, 1984) is proposed to 
describe canopy reflectance, including the Kuusk’s hot-spot 
formulation (Kuusk, 1994). This model is computer efficient and 
uses a limited number of input variables thanks to the simple 
approximation of canopy architecture that is considered as a turbid 
medium. 
Among the several atmosphere irradiative transfer models, the 
SMAC code (Rahman and Dedieu, 1994) was selected for the 
good compromise it provides between the realism of the 
simulations, the relatively small number of inputs and the 
computation requirements (aerosol continental type will only 
considered). 
 
46656 MERIS top of atmosphere reflectance observations were 
simulated, resulting from the sampling scheme based on 2 full 
orthogonal experimental plans :  the first one for the radiative 
transfer at the surface (Bacour et al., 2002) and the second one for 
the radiative transfer in the atmosphere. The 2 plans were done 
separately to maximize the number of atmosphere cases since one 
of them must be extracted from the signal by the NN. For all the 
variables, the distributions selected were supposed to approach the 
best the actual distribution of the variables over the Earth during 
the yearly cycle: current information available or truncated 
Gaussian laws from empirical knowledge were used. Because of 



the lack of knowledge on the co-distributions, all the variables 
were simply assumed independent (Baret and al., 2004). 
 
3.2 Representativity of the simulated data base 
To evaluate the representativity of the learning data base, we 
compared the TOA reflectance values as observed from actual 
MERIS sensor to those simulated in the learning data base. We 
used the 97 MERIS L1b images subsets to compute the 
reflectance mismatch for each pixel p: 

 
Where ρλ(i) represents the reflectance value of the pixel pi in the 
wavelength λ, i belonging to the learning data set. The reflectance 
mismatch is the RMSE computed between the actual MERIS 
spectrum and the closest one in the learning data base in the sense 
of quadratic distance. The averages reflectance mismatch value is 
about 0.01 with a maximum value of 0.03, representing 
respectively 1% and 3% of the reflectance value. The learning 
data base seems to represent well the actual MERIS data over the 
large range of variation considered. A closer inspection of the 
reflectance mismatch shows larger discrepancies in the blue 
bands, behaviour explained by the enhanced sensitivity to aerosol 
and Rayleigh scattering in the blue domain. 
 
3.3 Architecture, training and performances of the NN 
Among the 15 MERIS bands, bands 11 and 15 were not used 
because dedicated respectively to the oxygen and water vapour 
absorption. Therefore only 13 bands were actually used. In 
addition, the sun and view zenith angles as well as the relative 
azimuth between these two directions were also used as inputs. 
The total number of inputs amounts to 16. The output of the 
network is the AOT at 550nm. 
 
Finally half of the simulations were used to train the network 
thanks to the Levenberg-Marquardt minimization algorithm, while 
one quarter was used to evaluate the hyper-specialization of the 
network and the remaining to test its potential performances. 
 
The neural network applied to each case of the test data set 
provides relatively good performances, with a RMSE value of 
0.058 for an AOT varying between 0 and 1. The residuals are 
distributed as a Gaussian centred on 0.0, i.e. no bias is observed. 
However a slight overestimation appears for the very low values 
of AOT. From these theoretical performances, it is concluded that 
the spectral information as sampled by MERIS allows retrieving 
the aerosol optical thickness with a reasonable accuracy. Note 
however, that the aerosol type was here limited to the continental 
one. 

 
4.  RESULTS OVER MERIS AND RELATIVE 

COMPARISON WITH MODIS AEROSOL PRODUCTS 
 
4.1 Capacity to estimate the AOT with actual MERIS data 
The neural network was run over the 97 actual MERIS TOA 
reflectance images. The AOT as measured by the sun-photometer 
at the ground level integrates a distance of few kilometres in the 
sun direction, depending on sun zenith angle (figure 2). We 
supposed a height of 12 kilometres of the aerosol layer and fixed 
the width of the zone of the instrument’s view equal to the length 
induced by the sun zenith angle. Finally spectra of all the pixels of 
the zone are averaged and the resulting spectra is processed within 
the neural network, assuming implicitly an almost constant aerosol 
characteristics over the area. 

 

 
Figure 2 : Principle of a Sun-photometer measurements. 

Results show that the AOT at 550 nm as estimated by the neural 
network from MERIS level 1b products is in good agreement with 
that measured at the ground level thanks to the sun-photometer. 
The corresponding RMSE value of 0.1042 (figure 3, left) is higher 
than the theoretical performances observed previously over the 
test data set but this accuracy is comparable to other AOT at 550 
nm estimations within algorithms such as the extended DDV 
method. The distribution of the residuals is relatively well 
approached by a Gaussian distribution centred on 0.0. 

 
Figure 3 AOT estimations vs. ground measurements: NN 

based on MERIS (left) and MODIS aerosol products (right). 

4.2 Relative comparison with MODIS aerosol products 
This comparison was achieved over the 31 pairs of MODIS and 
MERIS images. The slight difference in terms of time of overpass 
between MERIS and MODIS was shorter than one hour, leading 
to an AOT difference smaller than 10% as measured by 
AERONET. The neural network algorithm provided a RMSE 
close to 0.1 with AERONET AOT measurements. Note that his 
value computed over the 31 scenes is quasi the same than the one 
observed over the 97 scenes. As compared to the MODIS AOT 
product, the RMSE value of 0.113 is slightly higher than that of 
MERIS and shows a slight overestimation. 
 
 

5. CONCLUSIONS AND PERSPECTIVES 
 

This study introduces a new concept in atmospheric correction 
over land surfaces. It is based on the retrieval of aerosol optical 
thickness using the spectral information of the signal as recorded 
from top the atmosphere by the MERIS sensor and radiative 
transfer model simulations. Despite other methods qualified as 
extended DDVs or the BAER one where the surface reflectance is 
supposed to be a linear combination of a pure bare soil and a pure 
vegetation components, our method allows a wide variability in 
the surface reflectances. The only implicit assumption used is that 



the surface spectral features are different enough from those 
associated to the atmosphere scattering and absorption. It was 
demonstrated that the set of radiative transfer models used were 
capable to simulate with a good accuracy (RMSE around 0.01) the 
top of atmosphere reflectance in the 13 MERIS bands considered. 
This justifies also the approximation introduced through the 
simple coupling or the radiative transfer between the surface and 
the atmosphere, as well as the use of a single aerosol type. 
Reciprocally, this result constitutes also an indication of the good 
absolute radiometric performances of the MERIS sensor. In 
addition to the good retrieval performances they proved, neural 
networks are very simple to implement and run within operational 
processing chains or toolboxes. Once the aerosol optical thickness 
is estimated, it is possible to complete the atmospheric correction 
if pressure, ozone and water vapour are known. In our case we 
used the simple SMAC code which is very computer efficient, but 
probably degrades slightly the accuracy of the whole atmospheric 
correction scheme as compared to 6S or MODTRAN codes.  
 
The assumption of a unique aerosol type (continental) might limit 
the performances of the algorithm, particularly for the larger 
particles. A concurrent estimation of AOT at 550nm and the 
Angström coefficient would potentially improve the accuracy of 
the retrieval. This aspect will be further investigated. The 
algorithm was developed for the MERIS sensor that compensates 
the absence of short wave infrared bands by a better spectral 
sampling in the visible and near infrared domains. However, the 
same principles could be applied to other sensors such as 
SEAWIFS, VEGETATION, MODIS, as well as for higher spatial 
resolution instruments such as SPOT and Landsat with due 
attention to the adjacency effects. 
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