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Abstract –Adaptive subspace detectors are widely used for low 
probability and anomaly detection. The complex remote 
sensing conditions in which hyperspectral imagery is obtained 
make the detector performance evaluation a non-trivial task. 
Many of the detector design parameters can only be studied 
empirically for their effects on detection performance. In this 
paper, hyperspectral images are generated using target and 
background endmember spectra based on the linear mixing 
model, where additive Gaussian noise is also added to the 
mixture model. An adaptive subspace detector is then applied 
to detect target pixels and the performance of the detector is 
investigated by varying the target abundance, noise variance, 
distribution of the target abundance, and target subspace 
dimension.  The results show that the actual performance of 
the detector is highly dependent upon all of the four design 
parameters.  
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1. INTRODUCTION 
 
Passive remote sensing has witnessed rapid development since the 
first commercial satellite Landsat-1 was launched in 1972. While 
the earlier optical sensors (e.g. Thematic Mapper) capture scenes 
with several discrete, broad bands (referred to as multispectral 
imagery), current advanced optical sensors onboard the satellites 
or spacecrafts (e.g. HYDICE, Hyerion) are able to capture scenes 
at hundreds of contiguous bands with bandwidth as narrow as 
several nanometers (referred to as hyperspectral imagery or HSI). 
As opposed to multispectral sensors that produce only a few 
radiance data points for a ground pixel, hyperspectral imaging 
sensors construct the near continuous quality radiance spectrum 
for each pixel in the scene. Thus hyperspectral imagery contains 
far more information than multispectral imagery does. And this 
subsequently makes a variety of potential civilian and military 
remote sensing applications possible, such as global change 
research, mineral identification and abundance estimation, and 
crop analysis.  
 
The detection of man-made targets or low probability natural 
materials is among the most popular applications for hyperspectral 
remote sensing. Large amount of information contained in 
hyperspectral imagery in terms of targets of interest and 
backgrounds can be integrated into a detector design process to 
greatly increase its detection capability. However, extraneous 
effects (such as atmosphere propagation, spectral variability, 
mixed pixels), which are notorious for almost all remote sensing 
applications, may also greatly decrease the detection power of the 
detector. This subsequently makes the evaluation of the detector 
performance a non-trivial task. Though many statistical based 

detectors are successfully applied for hyperspectral imagery target 
detection, the performance evaluation of these detectors for 
different imaging conditions is still lacking. 
 
According to Manolakis et al [1], the majority of algorithms used 
in hyperspectral applications fall into 4 categories: target / 
anomaly detection, change detection, classification, and spectral 
unmixing. In this paper, the focus is on  “target detection”, where 
different types of detector in hyperspectral remote sensing for both 
full pixel and subpixel targets are presented. In-depth analyses are 
given to the widely used adaptive subspace target detector for its 
rationale, derivation, and performance evaluation with respective 
to different detector design parameters. The performance 
evaluation shows that effects of some factors (e.g., the signal to 
noise plus interference ratio, dimensions of both target and 
background subspaces) can be resolved theoretically. Others (e.g., 
the randomness of the target abundance, the overlap between 
target and background subspaces) can only be studied empirically. 
 

2. TARGET DETECTION 
 

Target detection can be abstracted as 2 competing hypotheses: H0 
(target absent) vs. H1 (target present). A target pixel is defined as 
any pixel that contains object or material of interest in specific 
applications. Anything else that is not of interest is regarded as 
background. More specifically, the objective of target detection is 
to decide whether an observed pixel spectrum x contains only 
background spectra xb or both background spectra xb and the 
target spectrum xt. Though this is the same as hypothesis testing 
for conventional digital communication and radar/sonar detection. 
Conceptually, target detection in remote sensing applications 
depends mainly on the intrinsic characteristics of HSI data, such 
as spectral variability and sparseness of the target class. 
 
2.1 Spectral Variability 
Many remote sensing algorithms assume that for each pixel, the 
laboratory spectroscopic measurement of the material occupying 
that pixel is representative of the remote sensing measurements 
[2]. However the fact is that the spectral radiance for a specific 
material output from the sensor shows great variability from 
image to image, or even in the different geographic regions of the 
same image. The sources of variability include atmospheric 
propagation, sensor noises, particle size and roughness of the 
substance surface, illumination and viewing angles, and mixed 
pixels etc. The spectral variability and multi-sources of 
interference make the formulation of the target signals and the 
noise model not as simple. The ambiguity of the target signal 
means that people don’t know exactly what the signal is before the 
detector design and that’s why a composite hypothesis testing is 
always involved. These factors complicate the optimal detector 



design (in many cases, optimal detectors don’t exist). And the 
effects of these factors on detector performance can’t be solved 
theoretically.   
  
2.2 Sparseness of the Target Class 
Target detection is, more often than not, carried out in the 
following 2 scenarios: 1) the detection of man-made objects that 
are spectrally different from naturally occurred surroundings; and 
2) the detection of sparsely distributed minerals among heavy 
interfering background. So the targets of interest constitute a very 
small part of the whole hyperspectral image, which makes the 
target class sparsely populated. This means the probability of H0 
(target absent) is always near 1 and the probability of H1 (target 
present) is always near 0. There are many important implications 
for this. First of all, the sparseness of the target class means there 
is not enough calibration data to train a statistical classifier for 
target and background classification. This is why a detection 
procedure is proposed rather than a conventional classification 
procedure. Secondly, many criteria used for optimal detector 
design are not valid. Bayesian criterion is not applicable because 
the probability of each hypotheses and the cost assignment are not 
known a priori. The minimum probability of error criterion is also 
not applicable. Generally under the condition of the sparseness of 
the target class, the probability of error can be minimized by 
always accepting the null hypothesis (target absent). A Neyman-
Pearson criterion is the only one valid for target detection. 
 

3. ADAPTIVE SUBSPACE DETECTOR 
 

An adaptive subspace detector is one of the most popular detectors 
designed for subpixel target detection. It combines the linear 
unmixing model and the subspace model to realize subpixel target 
detection. The theoretical derivation of an adaptive subspace 
detector is described as follows: Assume there are P + Q 
endmembers in HSI data. P of them are targets of interest and Q 
of them are undesired background. The binary hypotheses can 
then be formulated as: 
 

 H0 (Target absent): waSx bb += , ),0(~ 2 IN wσw  
H1 (Target present): wSawaSaSx bbtt +=++= , 

 
where St is an PL× matrix representing P dimensional target 
subspace in Lℜ , Sb is an QL× matrix representing Q dimensional 
background subspace in Lℜ , L is the number of spectral bands,        

[ ]btS SS ,= , at is a 1×P  target abundance vector, ab is a 1×Q   

background abundance vector, i.e.,  [ ]TT
b

T
t aaa ,= , and the noise 

w is modeled as multivariate normal with uncorrelated 
components, that is, the noise in each band is i.i.d. with a zero 
mean and known variance of 2

wσ . 
 
The generalized logarithm likelihood ratio can be written as: 
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where )ˆ( baSSE  and )ˆ(aSSE  are the lack of fit when fitting the 
spectrum of x by using the full subspace S and the background 
subspace Sb in an unconstrained least square sense [1, 3-5].  

It can be shown that T(x) can be further written as: 
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where ⊥

bP  and ⊥
SP  are orthogonal to the full subspace S and the 

background subspace Sb. And based on this subspace 
representation, the probability distributions of T(x) under each 
hypothesis can be represented by a Chi-squared distribution of 
degree of freedom P, i.e.,  
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can be interpreted as the signal to interference and noise ratio.  
 
The detector represented by equation (2) is known as an adaptive 
subspace detector. The performance of the detector is theoretically 
determined by equation (3) if all of the design parameters are 
known and deterministic. The real performance of the detector, 
however, is affected by the variations of 2

wσ  and at, the formation 
of St and Sb, and their degree of separation. The main objective of 
this paper is to investigate the effects of some of the non-
deterministic detector design parameters on the actual detection 
performance of the adaptive subspace detector.  
 

4. EXPERIMENTAL RESULTS 
 
In this experiment, HIS data was used to investigate how the 
variations of target abundance noise variance, target abundance 
distribution, and dimension of the target subspace might affect the 
actual performance of an adaptive subspace detector. The 
background endmembers used included bare soil, grass, and shade 
endmembers. The background subspace dimension Q was held at 
a constant value of 3. The dimension of the target subspace P 
might range from 1 to 6. The target endmembers used were 
alunite, enstatite, gypsum, hermatite, jarosite, and olivine. The 
high-resolution endmember reflectance spectra were obtained 
from [6]. Figure 1 illustrates both the target and background 
endmember reflectance spectra. The spectral range is from 400 nm 
to 1300 nm, with a 10 nm bandwidth. 
 
256 by 256 HSI data were generated using the target spectra and 
the background spectra based on the linear mixing model. Five 
percent of the total pixels are randomly selected as target pixels 
and the rest are background pixels (95%) in each HSI data. AN 
adaptive subspace detector was then applied on the generated HSI 
data to detect the target pixels. Figure 2 shows how the generated 
HSI data looks like, the spatial distribution of the target pixels, 
amplitude of the test statistic T for each pixel, and the distribution 
of the detected target pixels.  
 



 
a. Target endmember spectra 

 

 
b. Background endmember spectra 

Figure 1.  Target and background endmember spectra 
 

 
Figure 2. Generated HIS data 

A (True color image), B (Spatial distribution of the target pixels), 
  C (Amplitude of the test statistic T), and D (Detected target 

pixels) 

Since four parameters (target abundance at, noise variance 2
wσ , 

distribution of target abundance, and dimension of the target 
subspace P) were investigated in this study, the experiment was 
divided into 4 subgroups. The test is performed on each subgroup 
by varying one parameter while holding all other parameters 
constant. For the target abundance distribution study, a Gaussian 
model was used to fit the target abundance distribution. The 
probability of false alarm was set to 0.001. The results obtained 
from this study are illustrated in Figures 3-6 for each subgroup. 
 

 

 
Figure 3. Effect of at on the detector performance  

( 2
wσ  = 0.0005, P = 1) 

 
 

 
Figure 4. Effect of 2

wσ  on the detector performance 
(at = 0.15, P = 1) 

 
It can be seen from Figure 3 that the probability of detection of the 
adaptive subspace detector increases quickly as the target 
abundance at increases. The probability of detection can reach 
nearly 100% when the target abundance is as large as 15% and 
nearly 1% when the target abundance is as small as 3%. This 
means that an initial guess of the average target abundance is 
important for the detection evaluation in real applications. 
 



 

 
Figure 5. Effect of the distribution of at on the detector 

performance (P = 1, 2
wσ = 0.0005, at = 0.15) 

 
 

 
 

Figure 6. Effect of P on the detection performance 
(at = 0.15, 2

wσ = 0.0005) 

 
 
Figure 4 shows that the probability of detection decreases quickly 
as the noise variance increases given fixed target abundance. This 
is of great importance in real applications. As was mentioned 
before, there are several factors that may contribute to the general 
SNR of remotely sensed imagery. More often, target detection will 
be carried out in heavy interference conditions. Multiple passes of 
denoising procedure are needed not only for a good visual 
representation, but also for a decent detector performance.  In the 
theoretical derivation, it is assumed that the target abundance is 
known and deterministic. Accordingly, the detector design is 
optimal in the Neyman-Pearson sense. In real applications, the 
target abundance is neither known a priori nor uniformly 
distributed. Figure 5 shows how the randomness of the target 
abundance affects the probability of detection. A higher variance 
of the target abundance distribution yields a lower probability of 
detection. Figure 6 shows how the probability of detection 
decreases as the dimension of the target subspace increases. As P 

increases to 6, the probability of detection decreases to less than 
10%. In many applications where the target reflectance spectrum 
is unavailable or people would like to work with raw radiance 
data, a set of basis vectors calculated from HSI are used to span 
the variability of the target radiance in remote sensing imagery. 
Though Healey and Slater’s study [7], which concludes generally 
9 basis vectors are enough for any material under any imaging 
conditions, is promising, this experiment indicates that 9 basis 
vectors for target subspace maybe too large for a good detection 
performance.  
 

5.  SUMMARY AND FUTURE WORK 
 
In this paper, in-depth performance evaluation of the adaptive 
subspace detector as applied to hyperspectral imagery is 
presented. The results indicate that the detector performance is 
directly related to parameters, such as the target abundance, noise 
variance, distribution of target abundance, and dimension of the 
target subspace, that are intrinsic to the characteristics of the 
hyperspectral imagery.  The experimental setup can be applied to 
any form of target detectors and will provide good reference for 
real remote sensing applications. 
 
Additional factors, such as parameters related to the background 
spectra (the dimension of the background subspace and the 
formation of the background subspace), and the separation 
between the target and background subspaces, are also unique to 
hyperspectral imagery. Thus, extensive studies are still needed to 
examine how these factors may affect the detectors’ performance 
to improve the overall detector design.  
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