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Abstract –There exist several problems in estimate of 
vegetation coverage derived from earth observation satellite 
data of various sensors with different spatial resolutions. The 
seamless use of vegetation indices is to be guaranteed for 
recent very high-resolution sensors. We have investigated the 
dependence of NDVI (Normalized Difference Vegetation 
Index) on sensor’s spatial resolution. It has been attempted to 
investigate interesting characteristics of semi-variance of 
QuickBird scenes in urban areas with highest spatial 
resolution. The characteristics of variograms in NDVI maps 
for rich vegetated and/or poor vegetated areas show apparent 
different features. In order to make it clear that the 
vegetation coverage of urban area has some correlation with 
the variogram's characteristics, we have investigated the 
NDVI distribution map with simulated different resolutions 
derived by discrete wavelet transform method. It is 
manifested that the properties of variograms in NDVI map 
show a correlation with the vegetation coverage property.   
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1. INTRODUCTION 
 

It is possible to monitor environmental circumstances of densely 
populated area by assessment of vegetation coverage in target area. 
One of environmental issues in urban areas in metropolitan cities 
is so-called 'heat island' effect that is pertinent to shrink of 
vegetation area and its activity. It is important to monitor the 
characteristics of vegetation in urban areas by remotely sensed 
data. To achieve monitoring its temporal changes regularly, 
various earth observation satellite data is very useful with its 
advantages for wide and periodical coverage of target area.  
However, since urban areas contain various constituent objects in 
a rather small area, they are often observed not as a homogeneous 
area but a heterogeneous area as mixed pixels by sensors with an 
insufficient ground spatial resolution.  Since the mixed pixels are 
not representation of a single land cover type, it is desirable to use 
sensors with higher ground spatial resolution for the analysis of 
urban areas.  For the mean while, there arises a trade-off among 
higher spatial resolution of the sensors, its narrower coverage and 
difficulty in grasping global context of the scenes due to their 
excessive variation of objects.  Further, it is important to consider 
the continuity of values of vegetation indices to monitor  
vegetation over a long period.  It is also necessary to compare . 

differences in values of vegetation indices among new various s 
ensors with different spatial resolutions. In spite of several defects 
of Normalized difference vegetation index (NDVI) as a vegetation 
index, its continuity as obtained from NOAA's AVHRR over 
twenty years shows its advantages (S.O. Los, 1994). 
The advent of sensors with high spatial resolution has offered us 
lots of advantages for the analysis of vegetation coverage in urban 
areas. It has also presented some difficulties and challenges in 
incorporation of vast accumulated data from sensors with lower 
spatial resolutions. The higher the resolution of sensors becomes, 
the more difficult the analysis of land surface seems to be due to 
too fine aspects in the satellite imagery. It has been pointed out 
that sensed data with an appropriate spatial resolution should be 
applied to observed objects with their intrinsic spatial patterns on 
the earth (Aaron Moody, 1995). Their results indicate significant 
relationships between the spatial characteristics of cover types and 
scale-dependent proportion errors. A related trend was found 
earlier by Turner et.al. (Turner, M., 1989). In a somewhat different 
context, Marceau et.al. investigated the impact of measurement 
scale and aggregation level on the information content of images 
and classification accuracy (Marceau, D., 1994). Key concept of 
scaling-dependency lies in an important relationship between 
spatial properties of scenes and spatial resolution of the sensor, 
which observes the scenes. And besides, we should take into 
account the concepts of aggregation and/or scale-reduction from 
images with finer resolution to coarser one. In order to extract 
appropriate features from the images with high resolution, it might 
be necessary to make use of global context of rather coarser 
images. 
  Detection of temporal change in vegetation in urban areas is one 
of important issues for an environmental monitoring.  The 
seamless exploitation of accumulated data of vegetation index by 
many sensors for many years is required for precise analysis of 
vegetation coverage. In other words, it is required to use remotely 
sensed data for analysis of vegetation coverage and land 
classification in urban areas with fitted sensor's spatial resolution.  
  The primary objective of the research presented here is to clarify 
the relationship between vegetation coverage properties in the 
NDVI map and the spatial structures of the objects in the scenes. 
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Table 1. Specification of used products acquired by 
QuickBird and ASTER.  

No Sensor
Spatial

Resolution[m]
Acquisition Date Bands for NDVI Products

1 QuickBird 2.8 2003/4/9 Band3,4 Standard

2 QuickBird 2.8 2003/9/3 Band3,4 Standard

3 ASTER 15.0 2003/9/5 VNIR(2,3N) ASTL01B

Figure 1. NDVI(Normalized Difference Vegetation 
Index) distribution map for rich vegetation area 
(Left) and poor vegetation area (Right) in western 
part of Tokyo. 



To depict the spatial patterns of the observed scenes, quantity 
measured by second-order statistics has been used in applications 
such as mining exploration and other engineering fields  (Journel, 
A.G., 1978). Related practitioners call the field of spatial statistics 
'geostatistics'. An important concept of the quantity inherent to the 
scenes is spatial continuity and is measured as covariance and 
semivariance. The semivariance plays a very important role in the 
analysis of data's spatial statistics in the present research.  Then 
the dependency of NDVI on the spatial resolution of the sensor is 
possible to be speculated by the results based on the above 
relationship.  
  So it has been expected to evaluate the scale or resolution 
dependence of vegetation index by several scale reduction 
methods.  Scale reduction methods such as simple down sampling 
or pixel averaging often give insufficient results for aggregation of 
the images with lower resolution from those with high resolution. 
To avoid the deficiency, it is utilized to use discrete wavelet 
transform for reduction of the spatial resolution of the images 
properly.  Adopted method to achieve the above purpose is 
‘Multiple Resolution Analysis’ by discrete wavelet transform 
because of several advantages especially in reversibility of 
resolution change (Jean-Paul Donnay, 2001). 
 Initial NDVI data with the high resolution is derived from the 
multi-spectral data of ‘QuickBird’ with the resolution of 2.8m. 
Multi-spectral data from ASTER with the resolution of 15m on 
the platform TERRA is also employed for the comparison with the 
simulated results of the current analysis of variograms. Through 
the investigation of the properties of semivariances for various 
scenes that are entire scenes or sub-scenes sampled with respect to 
several NDVI ranges which contain natural objects such as 
vegetation or artifacts, it is revealed that quite interesting 
characteristics of the relation between the objects' spatial scale and 
the sensor's spatial resolution.  
 

2. METHODOLOGY, DATA AND RESULTS 
 
   Most widely exploited vegetation index is Normalized 
Difference Vegetation Index since it has several advantages such 
that ratio-based indices can reduce topographic effects on spectral 
response and other several noise influences. NDVI has been 
extensively used to assess vegetation productivity and its coverage 
(Groten, S.M., 1993). One of the reason of the usefulness of 

NDVI lies in its characteristics that can reduce the 
multidimensional data yielded from multi-spectral sensor systems 
to a single index which is sensitive to canopy characteristics such 
as biomass, productivity, leaf area, amount of photo-synthetically 
active radiation, and percent vegetative groundcover (Dale A., 
1997).If an appropriate atmospheric correction for satellite data is 
not readily available, we can approximately use at-sensor radiance 
instead of surface reflectance.  
 In order to investigate closely the resolution dependent properties 
of NDVI, it is preferable to derive resolution-reduced data from 
the finest resolution data. Among several methods of resolution 
reduction, we have chosen and utilized the discrete wavelet 
transform as the fitted way of technique to the present research.  
 The wavelet transform can lead to a time-frequency 
representation of the data under investigation: in the case of 
images, the wavelet transform leads to scale-space representation 
(Jean-Paul Donnay, 2001). In the approach of multi-resolution 
analysis, the size of a pixel is defined as a resolution of reference 
to allow a measure of local variation in the image. The definition 
and detailed properties of the wavelet transform are skipped here 
due to the limitation of space.  
 Our method of decomposition of the images with high resolution 
is a conventional discrete wavelet transform based on Haar 
wavelet mother functions since the Haar wavelet function is very 
simple and has good computational cost. Besides, it has an 
excellent property of reversibility of multi-resolution images. It 
enables us to reconstruct the images with hierarchically different 
resolution by combining wavelet components and scaling 
components in the discrete wavelet transform. By discrete wavelet 
transform , two kinds of resolution-reduced images are generated, 
one is the averaged image with coarser resolution and others are 
three wavelet component images which consist of wavelet 
coefficients. Images with reduced spatial resolutions are generated 
by the discrete wavelet transform from an initial image with the 
finest resolution. Its size is confined to 2 to the power in the 
number of pixels of row or column due to the restriction of 
discrete wavelet transform. The specification of currently used 
satellite data is shown in Table 1. 
The NDVI distribution maps of item No.1 in Table 1 are shown in 
Fig. 1 as an color mapped image of 1024 x 1024 pixel where red, 
green, yellow and purple correspond to the following NDVI 
ranges : over 0.6, 0.6~0.4, 0.4~0.2 and below 0.2, respectively. 
Two regions are selected as ‘rich vegetation’ and ‘poor 
vegetation’ for the further detailed variogram analysis.  The 
threshold value 0.2 of NDVI for vegetation area is determined by 
an inspection of two-dimensional scatter plot of two bands of near 
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Figure 2.  Comparison of NDVI histograms for rich
vegetation area derived by QuickBird scene and its
resolution-reduced scenes. 
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Figure 3.  Example of two nested spherical variogram with
sill1 = 0.3, range1 = 10, sill2 = 0.15 and range2 = 60. 



infrared and visible red. 
The dependency of frequency of NDVI is calculated by multi-
resolution analysis and is shown in Fig. 2. Among resolution 
reduced data simulated by discrete wavelet transform, an 
interesting characteristics is found that there is an unchanged 
mean value and almost unchanged frequency value near two 
ranges of NDVI that are 0.3 and 0.6 .  
 There exists a limitation to investigate the spatial patterns or 
characteristics of two-dimensional digital images by the first-order 
statistics such as mean, standard deviation, median and histogram. 
Though the histogram is closely related to the probability density 
function in the scene, it cannot describe the characteristics of 
measures of pixels associated with their locations and distance of 
their pairs. Semivariance that is one of the second-order statistics 
characterizes the spatial structure of data sets, i.e. continuity or 
roughness. It is useful quantitative statistic measure even in the 
case common descriptive statistics and the histograms fail to 
identify the difference between similar data sets in terms of first-
order statistics.  
 In geostatistics, the covariance function of a one-dimensional data 
set is defined as (Isaaks, E.H., 1989), 
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 The parameter, hij, is called the lag and is the distance between 
the pairs of data points located at i and j.  The quantities   are the 
mean of z of all data points at a distance of -h or +h from some 
other data point; N(h) is the number of data point pairs separated 
by h.  
The semivariogram is given by the following equation 
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The semivariogram usually exhibits a characteristic shape, 
increasing from small lags to larger lags. The plateau where   
becomes more or less constant is the sill. The distance from zero 
lag to the onset of the sill is the range. 
 A useful measure of spatial variation in the values of a variable z 
is the semivariance, which is half the average squared difference 
in z values between pairs of sample points.  The key to 
investigation of the semivariance is the construction of a 
semivariogram, which is a plot of the semivariance, as a function 
of distance h. At a distance referred to as "range", the 
semivariance levels off to a relatively constant value, referred to 
as the "sill".  This implies that beyond this range, z values are no 
longer spatially correlated.  
The variogram can provide the spatial structure or patterns of 
observed objects on the earth quantifying dissimilarity as a 
function of separation and direction. Here we skip the effects of 
anisotropy for simplified analysis.  
 As is shown in Fig. 3, we introduce two sets of parameters which 
represents the characteristics of variograms, that is, two ‘sills’ and 
‘ranges’. By non-linear least squares method, we can derive two 
sets of characteristic parameters of variograms which can let 
variograms be fitted to ‘nested spherical model’  (Hans 
Wackernagel, 2003) : 
 
where sill1, range1, sill2 and range2 are defined by non-linear 

least squares fitting. We can identify the difference between two 
areas i.e. "range" is larger for area, which contains much natural 
objects such as vegetation than for area like urban area with short-
range which contains many artifacts.  Since it demands vast 
computation cost for calculation of semivariances for remotely 
sensed scenes, we use ordinary simple 'random sampling ' method 
to select sampling pixels from the target areas.  

In Fig. 4 and 5, the different characteristics of variograms 
between rich vegetated areas and poor ones are apparently shown. 
The values of 'Range' are fairly smaller in urban (poor vegetation) 
areas than in rich vegetation areas. The values of 'Sill' decrease 
according as the sensor spatial resolution becomes coarser. 
Simulated results of 'Sill' and 'Range' dependency on the sensor 
resolution are summarized in Fig. 6 and 7.  Especially in Fig. 7, 
the different aspects of 'Range2' between rich and poor vegetation 
areas with respect to the sensor resolution are seen. To extract 
interesting and important features of variogram's in certain range 
of 'lag's where variograms would show rich vegetation 
characteristics, variograms and their fitted curves are calculated by 
non-linear least squares fit to nested spherical model in eq. (3). 
The interesting results are shown in Fig. 8. Two types of rich and 
poor vegetation areas show their intrinsic spatial pattern in 
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Figure 4.  Dependence of variograms on sensor spatial
resolution for simulated scenes with reduced resolution
derived from 1024 x 1024 QuickBird scene including richly
vegetated areas. Variogram derived from observed data by
ASTER lies near simulated 44.8m variogram. 

Figure 5.  Dependence of variograms on sensor spatial
resolution for simulated scenes with reduced resolution
derived from 1024 x 1024 QuickBird scene including
poorly vegetated area. 
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variograms. Variograms in urban areas show zero slope in the 
range of 'lag' (500m < |h| <1000m), while in vegetated areas 
have slower increase of semi-variance in that range. The 

vegetation coverage percentile in Fig. 9 means the ratio of area in 
the range of NDVI(0.2~1.0) to the entire area.  

 
3. CONCLUSIONS 

 
 The dependency of NDVI histograms on the sensor spatial 
resolution is assessed directly by data from QuickBird with 2.8m 

resolutions,  their derived 
data with reduced spatial 
resolutions and ASTER 
with 15m. Through the 
analysis of the variograms 
for the entire scenes and 
both rich and poor 
vegetation areas, it is 
manifested the linear 
relation between the ground 
spatial correlation length, 
"range" and the sensor 
spatial resolution. There 
exists an apparent 
difference in the ground 
spatial correlation range 
between areas containing 
much natural objects and 
those including many 

artifacts. It is interesting that there exists the relationship between 
percentile of vegetation coverage and the 'range' of variogram and 
increasing tendency of ‘Range2’ on the increase of NDVI for rich 
vegetation areas. It is also shown that the slope of variograms in 
the range of ‘lag’ between 500m and 1000m for vegetated areas 
would become practically useful index for describing global 
vegetation context of .the intrinsic spatial properties on the surface. 
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Variograms with fitted to spherical model
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Figure 8. Variograms for vegetation and urban areas with lines 
fitted to nested spherical model. 

Figure9. Relationship between 
percentile of vegetation coverage 
and a 'range' of variogram . 
Circles and triangle are derived 
from QuickBird and ASTER, 
respectively. 
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