
SPECTRAL MIXTURE ANALYSIS FOR DATA VERIFICATION AND VALIDATION 
 

Borisova D., H. Nikolov, M. Danov 
Solar-Terrestrial Influences Laboratory-BAS  

Bulgaria Sofia 1113 Acad.G.Bonchev Str., bl.3 
E-mail: (dborisova, hristo)@stil.bas.bg mdanov7@yahoo.com  

 
Abstract - One of the basic issues in remotely sensed data 
processing and their interpretation is the spectral mixture 
analysis. Remote sensing measurements include mainly 
spectral data for obtaining information about the studied 
objects and on this basis describe them. In the real-world 
scenario the land cover is a mixture of different matters 
and in this case the correct discrimination of a single class 
relies on the theory of spectral mixture analysis. The 
spectral properties of minerals and rocks depend on many 
factors such as chemical composition and texture. The 
goal of the paper is to study spectral mixture reflectance 
and emissivity from iron-containing minerals and to apply 
the spectral mixture decomposition technique for mineral 
identification and to find their proportions in context of 
further verification and validation. The data consists of 
laboratory measurements in the visible, near infrared and 
thermal infrared bands with multi-channel spectrometers 
and airborne data. Discussion is finally made on the 
potential applications and ways to improve the accuracy 
and robustness of the products. 
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INTRODUCTION 
 
Pixels containing mixed spectral information about the 
objects under study are commonly found in remotely sensed 
data. This is due to the limitations of the spatial resolution of 
the airborne instruments (such as Landsat, SPOT, etc.) and 
the heterogeneity of features on the ground. The mixture 
spectra are often generated when the pixel covers more than 
one land cover class. This mixed classes often results in poor 
classification accuracy when conventional algorithms such as 
the maximum likelihood classifier (MLC) are used. It is 
possible to obtain better results if the mixed pixels are 
decomposed into different proportions of mineral 
components. In order to solve the mixed pixel problem, 
scientists have developed different models to unmix the 
pixels into different proportions of the endmembers (Mishev, 
1991; Ishoku, 1996). Spectral mixture analysis (SMA) is one 
of the most often used methods for handling the spectral 
mixture problem. It assumes that the spectrum measured by a 
sensor is a linear combination of the spectra of all 
components within the pixel. This paper aims to demonstrate 
a practical approach in unmixing spectra of ore minerals from 
Kremikovtzi obtained from laboratory, in-situ and airborne 
instruments. Our basic assumption is that airborne data 
measured as reflectance in red, near infrared and mid infrared 
ranges of electromagnetic spectrum and emissivity spectra in 
thermal infrared range are a linear mixture of the mineral 
composition of studied area. This method has been applied 
with great success for classification of vegetation (Ustin, 
1999) and for change detection (Rogan, 2002).  

 
STUDY AREA 

 
Kremikovtzi open pit mine is situated near the capital of 
Bulgaria, Sofia. The ores in Kremikovtzi deposit have 
polymetallic sulfide mineralization. The calculated deposits 
are estimated to be as follows: hematite ore amount to 32 
million tones, goethite ore comes up to 163 million tones, 
barite ore amount to 29 million tones and siderite ore come 
up to 52 million tones.  
On Figure 1 the main geology bodies are shown.  
 

 

 
Figure 1.  Geology scheme of Kremikovtsi deposit (report 
No274/1984, STIL-BAS) 
 
Three kinds of iron ore occur in the deposit:  
- goethite (Fe2O3.nH20) ore which is spread throughout the 
whole area of the deposit; it comprises 2/3 of all types of iron 
ore in the deposit and is characterized by the following 
chemical composition: Fe – 31,9%, Mn – 7,6%, BaSO4  – 
18,4%, Pb – 0,65%, Cu – 0,16%; 
- hematite ore is about 11% of the whole Fe-ore; it is 
composed mainly of the mineral hematite (Fe2O3) – with an 
average quantity of 60% and is characterized by the following 
chemical composition: Fe – 45,6%, Mn – 1,5%, BaSO4  – 
10,9%, Pb – 0,25%, Cu – 0,08%; 
- siderite (FeCO3) ore is preserved in the deepest parts of the 
deposit, which are unaffected by processes of oxidation; the 
average chemical composition of the siderite ore is: Fe – 
24,3%, Mn – 5,8%, BaSO4  - 19,7%, Pb – 0,31%, Cu – 
0,11%; 
- barite bodies are found within the goethite or the siderite 
ore or right above the iron ore stocks; the content of BaSO4 in 
the barite bodies varies from 18% to almost monomineral 
accumulation, and has an average value of 41,7%; for the rest 
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of the elements the average content is: Fe – 13,1%, Mn – 
2,9%, Pb – 0,59%, Cu – 0,17%. 
In Kremikovtzi open pit mine (Fig. 2) are produced iron and 
barite ore, iron and barite concentrate, sodium silicate 
solution, iron-oxide pigments, limestone, dolomite and 
construction materials. The production of iron ores and barite 
raw materials is from the "Kremikovtzi" field, dolomites from 
"Delyan" field; limestone from "Kozyak" field. 
 

 
 
Figure 2.  Photo of the Kremikovtzi open pit mine 
 

MATERIALS AND METHODS 
 

The results in this paper are based on spectral data coming 
from three different sources, namely laboratory, field and 
airborne.  
Laboratory measurements of goethite, hematite, siderite and 
barite minerals (5 samples each) are performed with multi-
channel spectrometers SPS-1 (Iliev, 2000) and IR-1 (Final 
Report, 1992). The SPS-1 instrument provides data in the 
spectral range 0,5 – 1,55 um with bandwidth less than 0.01 
um. The statistic reliability is guaranteed by integrating 10 
spectra per sample per measurement. In the stated range we 
put focus on NIR since for iron-containing ore minerals there 
is a specific minimum in the reflectance curve.  
The emissivity measurements are carried out using the IR-1 
instrument in thermal range 8-12 um (Final Report, 1992). 
These spectral data were measured in directional 
hemispherical reflectance. These data can be used to calculate 
reflectance (R) using Kirchhoff's Law (R=1-E), where E is 
emissivity.  
Field data were collected in Kremikovtzi open pit mine. 
Chemical analysis of the collected mineral samples was made 
to acquire the iron content. Spectral data were obtained with 
field instrument TOMS working in visible range of EMS. 
Unfortunately this data was of little use since more 
informative wavelength for the minerals studied was out of its 
range of operation. They was considered only as reference 
data with the laboratory ones.  
Airborne data used in the developed models are taken from 
Landsat Thematic Mapper (TM) instrument acquired in June 
2000. For the visual interpretation this digital image was 
displayed either as single band images or as additive color 
composites using the three primary colors; Red, Green and 
Blue (RGB). The band combination we found to delineate the 
mineral-containing ores from surrounding vegetation and 
urban areas is R=TM5, G=TM4, B=TM3. Two data sets was 

formed – one comprising the whole image shown on Fig. 3 
and smaller one seen as white rectangle on the same picture. 
From the large dataset only the data from the open pit was 
extracted based on topographic map and additional field 
information. 
 

 
 
Figure 3.  False color composition of Landsat TM bands - 
5(red), 4(green), 3(blue) 
 
In the Figure 3 all the pink patches mostly correspond to 
exposure rocks, green patches are vegetation and urban cover 
and violet color corresponds to bare soil.  
Four bands (TM3, TM4, TM5 and TM6) were used model the 
spectral mixture of minerals. First three are compared with 
data from SPS-1 and field data, while the thermal band (see 
Fig.4) was used in conjunction with IR-1 data.  
 

 
 
Figure 4  Grey scale image of TM6 
 
The laboratory spectral data for the minerals were 
numerically modeled as linear mixture using the theory of 
mixed classes (Mishev, 1991). Linear combinations of 
goethite with the other three minerals starting from 5% 
goethite and 95% other ending in 95% goethite and 5% other 
were computed for each wavelength with step 0,01um : 

rcomb(λi)=pgoethitergoethite(λi)+potherrother(λi) 

For correct comparison between the laboratory and TM data 
the further was averaged in the same ranges as TM bands.  



RESULTS AND DISCUSSION 
 

Plot of NIR = 0.76-0.9 um versus red = 0.63-0.69 um 
reflectance for laboratory reflectance spectra are presented in 
Figure 5. The mineral baseline is established with linear 
regression (n=54). 
If using only the red and NIR reflectance all ore-forming 
minerals fall on a well-defined line which resembles well-
known soil-rock baseline (Elvidge,1985). 
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Figure 5.  Plot of NIR vs. red reflectance 
 
Similar results were obtained with TM data from large 
(n=1180) and small (n=140) datasets. We consider that there 
is correct representation of all ore minerals in the large 
dataset since the angle between the regression lines is less 
than 10 degree. 
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Figure 6.  DN corresponding to red and NIR 

Numerical models of different mineral composition for the 
ore materials based on geological and lithological maps (see 
Fig.1). We find to be appropriate to model all possible 
combinations since this hypothesis was proved by chemical 
analysis too. On Fig.7 the modeled reflectance in NIR for 
variable amount of goethite in the mixtures could allow the 
researcher to make correct interpretation of field and airborne 
collected spectral data. The mixture goethite/barite is clearly 
distinguished if the reflectance is more than 50% and on this 
basis data from TM4 could be used for identification of iron 
containing minerals. The same conclusion is valid for the 
mixture goethite/hematite but the reflectance should be less 
35%. These results greatly facilitate the spectral analyst on 
the stage of multiple sources data verification and validation. 
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Figure 7.  Numerical models of mixtures  

Data for the studied minerals obtained under laboratory 
conditions with IR-1 (Fig.8) exhibit coincidence with similar 
data from other sources (TES, 2005). This promising result 
guarantee that the data from IR-1 are reliable and could be 
used in mineral composition investigation.  
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Figure 8. Emssivity spectra as measured by IR-1 

On the figure below the laboratory data was used to calculate 
the MIR/NIR ratio which confirmed the known iron 
absorption line in the range 0.8- 1 um (Clark, 1999).  
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Figure 9.  Relationship between iron content and MIR-
NIR ratio 



Using ground information two lines of TM4 data from the 
small dataset was extracted. These data expected to be from 
the pit slope and the graph shows good correlation with the 
modeled mixture of goethite/hematite. We consider this result 
as evidence in applying numerical models for prediction of 
unknown mixtures. This is particularly useful on the stage of 
airborne data verification with filed measured spectral data.  
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Figure 10.  Two lines from small dataset for TM4 

 
CONCLUSIONS 

 
In this paper a practical approach to establish correspondence 
between laboratory, field and airborne measurements for ore 
minerals has been discussed. A two-component linear model 
(e.g. goethite+hematite) for mineral composition found in 
open pit and satellite data over same area was created. In our 
future work we shall consider more detailed models including 
more minerals. 
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