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Abstract – DOAS-tomography is a remote sensing technique 
to retrieve 2 or 3 dimensional distributions of atmospheric 
trace gas concentrations. It combines Differential Optical 
Absorption Spectroscopy yielding average concentrations of 
trace gases along long light paths with reconstruction methods 
from computerised tomography. Here we refer to 
reconstructions from ground based measurements using 
artificial light sources. We present our reconstruction method, 
consisting in a discrete approach, and show that for locally 
confined distributions like dispersions plumes, reconstruction 
quality and reconstructed total concentrations can be 
tremendously improved by choosing an optimal 
parametrisation in terms of basis functions and dimension of 
the discretisation grid. Choice of the light path geometry has 
large influence as well, where for constant number of light 
paths, increasing the number of emitting systems tends to 
improve reconstructions. The method is applied to data from 
an indoor measurement and results are in good agreement 
with expectations, while the impact of measurement errors is 
moderate.  This method will be applied to an experiment 
intended to measure cross sections of trace gas distributions 
over the city centre of Heidelberg, Germany, taking place in 
spring and summer 2005.   
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1. INTRODUCTION 
 

Knowing the exact amount and distribution of trace gases in the 
atmosphere on microscales is important for assessing air quality in 
polluted areas, identifying and estimating local emissions and 
evaluating chemical transport models. Spatial concentration fields 
can be obtained by a sufficient number of point measurements, but 
possibly only at large instrumental expense and with high 
sensitivity to spatial and temporal fluctuations. Alternatively, 
remote sensing methods like the Differential Optical Absorption 
Spectroscopy (DOAS) (e.g. Platt, 1994) provide mean 
concentrations along light paths -in the case of DOAS for species 
such as NO2, O3, SO2, HCHO, HONO, BrO and aromatics. Here, 
we consider ground based measurements with an artificial light 
source and reflectors that, after a distance of several hundred 
meters up to a couple of kilometers, redirect the light back into the 
emitting system where it is analysed (so called Long-Path (LP) 
DOAS). Using measurements along several light paths, 
information on the spatial distribution can be obtained by various 
retrieval techniques. We examine a discrete tomographic approach 
that was used in  (Laepple et al., 2004) for the reconstruction of a 
cross section through a NO2 motorway emission plume 
perpendicular to it from measurements by two telescopes and 16 
light paths in total (see (Pundt et al., 2005) for experimental 

details). The unknown concentration field is parametrised by a 
limited number of local –box or linear– ‘basis’ functions and the 
resulting discrete concentration values are fit to the data by a least 
squares principle. It is well known that for narrow peaks, in our 
case Gaussians emerging from the semi-empirical approach which 
describes the turbulent and advective dispersion of  pollutants in 
the atmosphere by a Gaussian diffusion equation, discretisations 
can be chosen that lead to highly under-determined systems, if 
additional constraints are chosen. The solution with smallest norm 
of the concentration vector is examined in detail with respect to 
parametrisation and peak extension. Different geometries with 36 
light paths –a realistic number for LP-DOAS measurements– are 
compared.  Furthermore, a ‘grid translation’ method proposed in 
(Verkruysse and Todd, 2004) for the case of box basis functions is 
modified for the linear case. The simulation results are used for an 
indoor experiment, where one or two cylinders filled with NO2 
were placed into an area that was monitored by three telescopes 
and 39 light paths in total (Mettendorf et al., in preparation). A 
similar, yet less regular, geometric setup with at least 16 light 
paths will be used to measure 2d trace gas distributions over the  
city of Heidelberg. 
 
First considerations for tomographic measurements for 
atmospheric gas concentrations by laser scanning can be found in 
(Wolfe and Byer, 1982) but the experimental proposal has not 
been carried out and their analytic reconstruction method, adopted 
from medical systems, is not applicable in our case. On the other 
hand, a variety of studies was dedicated to the remote sensing of 
indoor gas concentrations and their dispersion by different 
experimental techniques (e.g. Yost et al., 1994; Drescher et al., 
1997; Fischer et al., 2001). Theoretical studies in this field dealing 
with the performance of algorithms usually use a discrete box 
approach and least squares solutions minimising some quadratic 
functional of the concentration vector (Todd and Ramachandran, 
1994; Price et al., 2001) or maximising logarithmic measures of 
likelihood or expectation (Samanta and Todd, 2000). A method 
suggested in (Drescher et al., 1996) constists in fitting a certain 
number of Gaussians with variable variances, maxima and 
positions to data from chamber dispersion experimemts. Todd and 
Bhattacharyya (1997) examine indoor measurement setups with 
one to four emitting systems and fan beam configurations (90°-
360°), but for a very large number of rays (at least 120) and 
including mirrors to generate projection-like light paths. Neither 
of the studies mentioned has been systematic with respect to the 
shape or extension of the concentration distributions or the effects 
of different parametrisations, but all authors stress the fact that 
results may depend very much on the specific distributions 
considered. 
 

2. METHOD 
 



2.1  Discretisation and Least Squares Minimum Norm 
Solution 
Tomographic DOAS measurements provide integrated 
concentrations ∫= ii cdsd )(r along a number of light paths i. The 

unknown concentration field is parametrised by a limited number 
of local ‘basis’ functions )()( rr jj jbxc ∑≅ , where for box 

functions xj  represent concentration values within the boxes of the 
discretisation grid, while for linear functions xj  are concentration 
values on the grid nodes and values in between are linearly 
interpolated (see (Laepple et al., 2004) for details). The resulting 
discrete, linear system ii dAx =)( is replaced by a least squares 
principle. The matrix A contains all information about 
discretisation and light path geometry.  As mentioned, for peak 
distributions usually the under-determined case applies, and we 
choose the solution minimising the norm of the vector xj. Iterative 
algorithms converging to this kind of solution have widely been 
studied in image reconstruction; we use the Simultaneous Iterative 
Reconstruction Technique (SIRT), a simple scheme that proved 
robust to measurement errors. Additionally a constraint for 
positive concentration values is implemented (c.f. (Laepple et al., 
2004) and references therein).  
 
2.2  Reconstruction Quality 
The evaluation of a reconstruction depends on what features one is 
mostly interested in, e.g. to get the correct maximum 
concentrations of toxic pollutants is important if human health is 
concerned. In image reconstruction the overall quadratic misfit 
between the test and reconstructed distribution is commonly taken 
as a quality criterion. It is known as nearness, if normalised to 
give 1 if the reconstructed field is just the spatial mean of the test 
distribution: 

   ( )( )212
)()(1

∫ ∑−= rr jj j bxcdA
N

nearness     (1) 

with ( )( )212
)()(∫ −= rr ccdAN and all integrals referring to the 

reconstruction area. For narrow peaks, reconstruction of the 
precise shape of the distribution might not be feasible, so, thinking 
of emission plumes, the precision of amounts of concentration 
reconstructed within the peaks is also considered in the following.  
 
2.3 Grid Translation 
For coarse, irregular light paths, the choice of a single (regular) 
discretisation grid is to some extent arbitrary and for peak 
distributions by no means likely to be the ideal one. This led 
Verkruysse and Todd (2004) to take into account reconstructions 
from several grids, shifted against each other in either or both 
directions in the plane. We modify their method for the linear 
discretisation by taking the average of the individual 
reconstructions. 

 
3. SIMULATION RESULTS FOR GAUSSIAN PEAKS 

 
To study the reconstruction of Gaussians, we use the measurement 
configuration of Fig. 1 with three telescopes in the corners of a 
square area of 100×100 arbitrary units and 36 light paths in total. 
The Gaussian test distributions are located randomly in the area 
and variances vary in four ensembles from σ =3 a.u. to 30 a.u. 
Taking the extension of the distribution as 2×3×σ (at 3σ the 
maximum value has fallen to 1%), ensemble 1, containing narrow 
peaks, represents the lower limit of distributions detectable by this 

coverage with light paths, whereas large peaks from ensemble 4 
smoothly extend over the whole area. 
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Figure 1.  Light path setup 
with three telescopes, each 
emitting 12 beams in a 90°-
fan. Every beam is reflected 
back into the telescope by a 

retro-reflector. 

   
 
Fig. 2 shows total reconstruction errors (i.e. nearness, Fig. 2a) and 
deviations of total amounts of concentration within the 
reconstructed peak relative to the original one (Fig. 2b) versus the 
dimension of the reconstruction grid for the bilinear 
parametrisation. Ensemble means are shown for one peak and four 
peaks (concentration maxima between 0.1–1 a.u.) and 300 random 
samples in each ensemble.  
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Fig. 2   Ensemble mean nearness (a) and absolute values of the    
relative difference between reconstructed and original amounts of 

concentration within the peak (b) for linear parametrisation (for n×n
pixels the dimension of the bilinear grid is (n+1)×(n+1)).  
Extensions of the peaks increase from ensemble 1 to 4. 

 
 
For narrow peaks, the overall reconstruction error can be 
drastically reduced by choosing high dimensional grids. The 
systems of equations are under-determined by a factor up to 3, 
where the additional constraints come from the iteration start 
serving as a priori and the positivity constraint for the 
concentration values.  Dividing the reconstruction error into one 
part that is due to imperfect representation of the real 
concentration field by the basis functions (discretisation error) and 
another one which is the misfit between the best possible 
representation and the actual inversion result (inversion error), it 
can be shown (Hartl et al., in preparation) that for increasing grid 
dimension the inversion error part increases and the decreasing 
total reconstruction error is solely a discretisation effect. 
Comparing box and bilinear discretisation, it furthermore can be 
shown that not only is the discretisation error smaller for the linear 
discretisation, but also the inversion error -at least for the 
reconstruction principle and test distributions considered here. The 
same trend as for nearness exists for the error of amounts of con- 
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Figure 3.  Reconstruction of two (a) and four (b) peaks for bilinear parametrisation using a single, regular grid and an 

averaging grid translation scheme, respectively. The original grid is shifted four times in each direction. 
 
centration reconstructed within the peak. This is not an effect of 
discretisation as the pixel length is taken into account in the 
extension of the reconstructed plume (Hartl et al., in preparation). 
Deviations refer to ensemble means and averages over random 
peak locations, but still the numbers (around 20% for one narrow 
peak and around 30% for four narrow peaks; less than 5(10)% for 
large plume(s)) can be taken as rough estimates for the precision 
of reconstructed total concentrations.  
 
Fig. 3 shows examples for the reconstruction of two (Fig. 3a) and 
four (Fig. 3b) peaks, respectively, comparing reconstructions from 
a single grid and from averaging over translated grids. The grid 
was shifted four times in each direction and clearly this reduces 
accidental features due to the choice of a single grid. In general, 
the nearness is reduced by applying the averaging scheme, while 
concentration integrals remain largely unaltered and the peak 
maximum values decrease (Hartl et al. in preparation).  
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Figure 4.  Ensemble mean values for four peaks from ensembles 1 
to 3 and geometries as described in the text. a) Nearness. b) 

Absolute values of the relative difference between reconstructed 
and original amounts of concentration within the peak. For 

geometry 3T90° values for one and two peaks are also shown. 
Reconstruction on an 8×8 bilinear grid without grid translation. 

 
 
Finally, Fig. 4 shows nearness and total peak concentrations for 
different geometries, each of them generated by 36 light paths. 
They consist of two to four telescopes sitting either in the corners 
(90°-beam fans) or in the baseline centers (180°-beam fans) of the 

square (the geometry of Fig. 1 is denoted 3T90° here). Variances 
of the test distributions vary within the first three ensembles, but 
the order of the geometries does not depend very much on the 
choice of the distributions. Clearly, there are distinct differences 
between the geometries, where increasing the number of 
telescopes improves reconstruction quality, except for the 180°-
fan geometries. Here the coverage with light paths becomes more 
irregular and sparse when keeping the number of light paths 
constant (in contrast to the procedure in (Todd and Bhattacharyya, 
1997)). The influence of measurement errors on different 
geometries is studied elsewhere (Hartl et al., in preparation). 
 

 
4.     APPLICATION TO AN INDOOR EXPERIMENT 

 
A light path setup similar to the one shown in Fig. 1, on an area of 
15×10 m2 and with 39 instead of 36 light paths for instrumental 
reasons, was realised in an indoor experiment, mainly to study the 
performance of a new instrument (Mettendorf et al., in 
preparation). This instrument emits up to six rays all at once 
instead of just one as the conventional ones. In the experiment, 
four beams were emitted by each of the three telescopes and four  
 
 

 
 
scans were necessary to complete the whole geometry of 39 light 
paths. One or two cylinders of 2m diameter filled with NO2 were 
used to simulate locally confined concentration distributions at 
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different positions of the test area. Fig. 5 shows concentration 
integrals (so called column densities) along the 39 light paths for 
one cylinder, on the one hand from simulations and on the other 
from experiment, for one of the positions. They agree reasonably 
well within all uncertainties.  Fig. 6 shows profiles in one 
direction through the concentration distribution reconstructed 
from the data of Fig. 5 and how it compares with theoretical ones. 
Fig. 6a illustrates how the reconstruction from ideal model data on 
the regular 12×12 bilinear grid differs from the best possible 
representation of the cylinder distribution on this grid (referred to 
as inversion error above). Also shown the peak reduction resulting 
from the averaging grid translation scheme. Finally, Fig. 6b shows 
the sensitivity of the reconstruction to the measurement errors 
from Fig. 5. Relative errors on the data and the concentration 
values are of the same order. 
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Figure 6.  Profiles for the cylinder position as in Fig. 5. a) Model 
reconstruction refers to reconstruction from simulated data. Grid 
translated five times in each direction. b) Dotted lines refer to 1σ-
errors as in Fig. 5. All reconstructions on a 12×12 bilinear grid. 

 
 

5.     CONCLUSION AND OUTLOOK 
 
Facing a modest number of light paths, the possibility of 
reconstructing atmospheric trace gases from tomographic LP-
DOAS measurements crucially depends on the shape, extension 
and spatial variability of the distributions compared to the mesh 
size formed by the light paths. In contrast to applications in 
computerized tomography, careful choice of the parametrisation of 
the problem and of the light path setup plays a major role. For a 
discrete approach using a linear parametrisation and a least 
squares minimum norm solution, we have shown that 
reconstruction errors in terms of overall quadratic deviations and 
errors for the total concentrations can be reduced by choosing the 
optimal dimension of the discretisation grid. Averaging over 
several reconstruction grids reduces accidental features. Analysis 
of an indoor experiment has shown that the impact of pure DOAS 
measurement errors on the reconstruction is moderate for the cases 
considered here. We have not studied other reconstruction 
principles, but work related to this topic is in progress. 
 
Giving the reconstruction result in the form c(r)±∆c(r), i.e. with 
an estimation of the reconstruction error field, as done by Laepple 
et al. (2004), is only possible with specific assumptions on the 
unknown distribution. In the same way, the effect of time 
dependent distributions is related to specific atmospheric 
conditions and the details of the measurement cycle. These 
questioned are currently addressed in the analysis of a 
tomographic experiment over the city center of Heidelberg (Pöhler 

et al., this issue) where three telescopes and 16 light paths at least 
will be used to monitor an area of 3×4 km2. 
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