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Abstract - Soil moisture exhibits spatial and temporal 
variability.  Spatial variability is mostly associated to 
climatology patterns, topography, soil texture, and vegetation 
index; where as, temporal variability is primarily associated to 
rainfall and air temperature events.  The spatial variability is 
modeled by a long-term memory model whereas the temporal 
variability by a short-term memory model.  The long-term 
memory model is a regression model that expresses the 
expected monthly soil moisture for a specific grid, where as 
the short-term memory model is a stochastic transfer function 
model that estimates the soil moisture response in hourly basis 
for a given grid. 
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1. INTRODUCTION 
 

It is well established that performances of atmospheric numerical 
models are very sensitive to initial and boundary conditions.  The 
regional atmospheric modeling system that is being used to 
simulate the climate dynamics in Puerto Rico is highly sensitive to 
soil moisture initial conditions (Comarazamy, 2001).  The soil 
moisture over land is a key component of the surface water and 
energy budget.  The soil water content regulates the partition of 
latent and sensible heat fluxes at the surface, affecting a large 
number of boundary layer (Balsamo, et al., 2004).  Incorrect initial 
conditions will generate misleading modeling results.  For 
instance Balsamo, et al., (2004) reported that erroneous estimate 
of total soil moisture affects the quality of the forecast for several 
days in using the numerical weather prediction scheme.  This 
article attempts to present a high resolution and a reliable 
methodology for estimating soil moisture.  The main purpose of 
the current research is to use remote sensing information and 
statistical tools to estimate soil moisture.   
 
The second section of this paper describes the data used in this 
research.  Section three presents the proposed methodology to 
estimate soil moisture.  Preliminary results are shown in section 
fourth, and conclusions and recommendations are exhibits in the 
last section. 
 

2. DATA COLLECTION 
 
Data are divided in long-term records and short-term record.  The 
long-term records include monthly records of: rainfall, air 
temperature, topography, vegetation and soil moisture; where as, 
short-term records includes hourly records of: rainfall, 
temperature, and soil moisture.  Rainfall observations were 
obtained by using NEXRAD and include observation from 2002 
to 2004.  Air temperature and vegetation index were obtained 
from MODIS and the records include information from 2000 to 
2004.  Soil texture, elevation and average slope with a 1 km 

spatial resolution for Puerto Rico (PR) were obtained from the 
Natural Resources Conservation Service (NRCS).  In-situ 
observations provide simultaneous data for soil moisture, rainfall 
and air temperature in hourly basis.  In-situ observations come 
from 15 soil moisture stations located in the western part of PR.  
The soil sensor measures the dielectric constant of the soil to 
estimate its volumetric water content.  It does this by finding the 
rate of change of voltage applied to the sensor once it is buried in 
the soil.  A soil station has 3 soil sensors, an air temperature 
sensor, and a rain gauge.  Three soil core samples were obtained at 
each station with the purpose of measuring in the laboratory the 
volumetric water content and calibrate the soil moisture sensors.  
These soil cores are also used to identify the soil texture.  A theta 
probe was also used to measure the spatial variability of the soil 
moisture in a nearby area of the soil moisture.  Figure 1 shows the 
instruments that integrate a soil moisture station. 
 

 
 

Figure 1.  Instruments of a soil moisture station. 
 

 
3.  METHODOLOGY. 

 
3.1. Modeling spatial variability.   
The long-term memory model that expresses the spatial variability 
is a regression model that represents the expected soil moisture for 
a specific area and time.  The proposed model can be expressed as 
follows: 
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where mjr , and mjg ,  are the average values of rainfall, and 

gradient air temperature at the thj  grid and the thm  month, 

respectively.  The variables jv , js and je are the vegetation 

index, the average slope and the elevation of the thj  grid. mj,ε  

is the random error with mean zero and constant variance for the 

thj  grid and the thm  month.  mjid ,,  is the thi regression constant 



associated to the thj  grid and the thm  month.  The average 
monthly gradient air temperature is defined as follows: 
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Where mjT ,max  and mjT ,min  are the average maximum and 

minimum air temperature for the thj  grid and the thm  month, 
respectively.  The coefficients of equation (1) will be obtained by 
using in-situ observations that come from 15 fixed stations and 
about 35 random samples from portable stations. 
 
3.2  Modeling temporal variability. 
The short-term stochastic interaction among soil moisture with 
rainfall and air temperature can be represented by a Transfer 
Function (TF) model.  The concept of a TF model derives from 
the idea of cause and effect relationship among the input and 
output variables of a dynamic system.  The input variables of the 
soil moisture system transfer into variations to the output variable 
of the system.  Thus, the input variables are the air temperature 
and rainfall, and the system response (output) is the soil moisture.  
Sampling field observations show that the soil moisture is driven 
by the cumulated rainfall and air temperature when instantaneous 
rainfall event is not present.  However, if a large spell of no 
rainfall has occurred a significant response on the soil moisture is 
observed under the presence of an instantaneous precipitation 
event (see Figure 2).  On the other hand, if the soil is almost 
saturated or if it reaches its hold capacity with large spell of 
cumulated rainfall then the response of the soil moisture to the 
next rainfall event is marginal, even if a large rainfall event has 
occurred (see Figure 3).  Figure 2 shows sampling observations 
obtained at Mayaguez station during the period of June 16-23, 
2004 where the sequence of dry spell and an instantaneous rainfall 
of 0.25 in/hour generates a large response on soil moisture.  Figure 
3 shows observation obtained from the same station but during the 
period of July 3-16, 2004 when the cumulated rainfall generates 
that the soil almost reaches its hold capacity and the response of 
the soil moisture is very small, even though the instantaneous 
rainfall event is very large, 1.25 in/hour.  These causal 
relationships show evidence that the dynamics of the soil moisture 
system can properly be modeled by a TF model.  
 

 
Figure 2.  Sampling at Mayaguez station from June 16-23, 2004. 
(green is rainfall, blue is soil moisture and read is air temperature).  
 
The TF model that represents the soil moisture system for Puerto 
Rico has several input variables in addition of the noise 
component.  However, because of data limitations only two input 
variables were considered: rainfall and air temperature.  Rainfall 

was provided in hourly basis and it was noted that the air 
temperature is also required in hourly basis; however, the 
available information is in a daily basis.  Thus, two TF models are 
proposed in this work, the first one is used to estimate air 
temperature and the second one is used to estimate soil moisture.   
Because of space limitations the air temperature model is not 
included in this paper. 
 

 
Figure 3.  Sampling at Mayaguez station from July 3-16, 2004.   
(green is rainfall, blue is soil moisture and read is air temperature). 
 
3.3.  Soil Moisture Model. 
The soil moisture process exhibits short- and long-term memory 
responses.  In this research the long-term memory response is the 
soil moisture reaction to events that lasted more than 30 days, 
where as the short-term memory is the response to events that 
occurred in an interval that is less than 30 days and typically are 
instantaneous events that seriously impact the soil moisture. 
 
In this research a model is proposed to estimate soil moisture and 
has four major components: the trend component, rainfall 
intervention, temperature effects, and noise component.  The 
model can be written as follows: 
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The variable 

jth ,
 is the soil moisture at time t over the jth grid.  

The variable jtn ,  is the trend component and represents the 

dynamic mean of the soil moisture.  The trend component has four 
major sources:  the average monthly soil moisture (computed from 
equation (2)), the 24-hours gradient air temperature, the 
cumulative rainfall during the last 4 days, and the average air 
temperature during the last 4 days.  The variable jtid ,)(  is the 



gradient air temperature that occurred during the last 24 hours and 
was defined by equation (2).  The 24-hours gradient temperature is 
essentially the result of the sun energy affected by relative 
humidity, cloud coverage and wind dynamics.  This gradient 
provides a linear effect to the soil moisture, the larger the gradient 
the smaller the soil moisture.  Equation (4) tries to express this 
linear relationship.  The variable jtQ , is the cumulative rainfall 

during the last 4 days and increases the soil moisture in a 
logarithmic manner.  Equations (4) and (5) try to express these 
relationships.  The variable jt ,τ represents the moving averages 

air temperature during the last 4 days, and it is computed at time t 
and at the location j.  This moving average varies linearly with the 
soil moisture, the larger the average the smaller the soil moisture.  
Equation (4) tries to represent this relationship.  The parameter 
ρ represents the moving window size of the memory and in this 

case 96=ρ  hours.  The ρ  value was estimated by 

minimizing the sum of square errors.  The variable jt ,ε is the 

noise component of the model. 
 
Equation (3) represents the impulse response function of the soil 
moisture to an instantaneous rainfall occurrence, i.e., the soil 
moisture short-term memory response.  It should be noted that 
instantaneous rainfall is multiplied by and exponential term which 
indicates the history of rainfall process.  It can be noted that when 
the soil reaches its hold capacity the soil moisture response is 
marginal.  On the other hand, when the cumulated rainfall is small 
then the responds of the soil moisture is large.  The overshooting 
response can be controlled by multiplying the instantaneous 
rainfall by an exponential function as is shown in equation (3).  
The parameter j,01ω  represents the proportional increment of 

soil moisture as a response to an instantaneous occurrence of 
rainfall.  The parameter j,11δ  expresses the exponential decay of 

the soil moisture effect as a result of instantaneous rainfall event.  
Although, the rainfall occurs at time t its effect remains in the soil 
and starts disappearing in an exponential fashion.  The smaller the 
delta, j,11δ , the faster the elimination of soil moisture, as shown 

by equation (8).  It should be noted that the absolute value of delta 
is restricted to be less than one in order to obtain a causal 
relationship.  The exponential decay can be observed in the 
expansion of the following rational form: 
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The third term of equation (3) represents the response of the soil 
moisture to the impulse of a given temperature value at time t.  
The soil moisture is responding to the current and the last two 
temperature values.  The soil moisture response is dissipating by 
the influence of the second order system defined by the delta 
values.  In order to be a causal response, the roots of the 
polynomial in B of the denominator on the third term of equation 
(3) must fall outside of the unit circle.  Where the j,1φ  is the 

autoregressive parameter of the noise component and should be 
estimated by using observations.  Again in order to be a causal 
process the absolute value of phi must be less than one. 
 

4. PRELIMINARY RESULTS 
 
4.1. Parameter estimation.  
The identification of a TF model is a trivial process when there are 
one input and one output variable.  The typical procedure consists 
of prewhitening the input variable and using the identified filter to 
process the output variable throughout the filter and then the 
cross-correlation function between the filtered variables is used to 
identify the time delay and the polynomial size of numerator and 
denominator of the impulse response function (Box and Jenkins, 
1976; Brockwell and Davis 2002).  When two or more input 
variables are considered the cross-correlation function is 
inaccurate to identify the time delays and to determine the size of 
polynomials of impulse response functions.  Thus, it was noted 
that it is more efficient to use an optimization algorithm to identify 
the model structure and then estimate the parameters of the model.  
In this work a nonlinear optimization tool was used to identify and 
estimate the elements of the soil moisture and temperature models.  
 
The implemented procedure is flexible in the sense that a model 
with a no trivial structure can be estimated by using a direct search 
in a nonlinear computational approach.  The procedure is based on 
performing the long-term division of the involved polynomials 
and the series are truncated to include only the significant values.  
Since the structure of the model is simple and the range of the 
parameters is small, then an efficient procedure can be 
implemented to estimate the parameters.  The simplex search 
algorithm has been selected to perform parameter estimation.  The 
simplex search does not require computing derivatives to perform 
optimization; this algorithm uses a function evaluation procedure 
taking advantage of the geometry of the optimization surface.  
This procedure is very efficient especially when the long division 
and optimization algorithms are programmed in the same 
software.  Matlab provide a robust set of optimization algorithm in 
a single computer package. 
 
Model identification and parameter estimation was performed and 
results are summarized in Table 1.  This table shows the estimates 
for the soil moisture model. 
 
Table 1.  Parameter estimates for soil moisture model for the 
Mayaguez station. 
 

 
 

 
Figure 4.  Soil moisture model fitting 

(blue the observed and read the estimated soil moisture) 



Model fitting performances are shown in Figures 4 and 5.  Figure 
4 shows the observed and the estimated soil moisture at Mayaguez 
station.  Figure 5 shows the observed and estimated air 
temperature at Mayaguez station. 
 

 
Figure 5.  Air temperature model fitting. 

(blue the observed and read the estimated air temperature) 
 

 
4.2.  Model Validation 
The actual model testing procedure is known as the cross-
validation.  The performed cross-validation exercise consists of 
evaluating the fitted model with an independent data set.   The 
selected data set for cross-validation consists of data collected at 
the same station from the period of July 3-16, 2004.  It should be 
noted that climatic conditions from these two data sets are 
different and the average level of soil moisture changes from 22% 
to about 35%.  The cross-validation results can be observed in 
Figures 6 and 7. 
 

 
Figure 6.  Observed and estimated air temperature model. 
(blue the observe and green the estimated air temperature) 

 

 
Figure 7.  Observed and estimated soil moisture model. 
(blue the observe and green the estimated soil moisture) 

The average absolute errors of the cross-validation exercise for air 
temperature and soil moisture models are: 3.21 oF, and 0.0394 
cm3/cm3, respectively.  The correlation coefficient between the 
observed and the estimated values are: 0.91 and 0.72.  These 
results show that proposed models are appropriate statistical tools 
to estimate air temperature and soil moisture in hourly basis.  
These models can easily be calibrated to other tropical regions 
 

5. COCLUSIONS 
 
A new method is proposed to estimate soil moisture in hourly 
basis.  These estimates can be used to generate the initial 
condition to run a regional atmosphere model.  This methodology 
can be easily implementing in other climatic conditions, after 
properly adjusting the parameters of the TF model.   
 
The proposed soil moisture model exhibits short and long term 
memory.  The long term memory is modeled by using 
climatological patterns, as well as gradient temperature that occurs 
during the last 24 hours and also using the last 4 days of 
cumulated rainfall, and the average temperature during the last 
four days.  The instantaneous rainfall and air temperature are used 
to model the short term memory.  Elevation, soil and vegetation 
classes are inherent into the spatial variability of soil moisture, 
while precipitation and air temperature are mostly associated to 
time variability. 
   
The air temperature model generates hourly estimates based on 
daily air temperature gradient and hourly rainfall. 
 
Preliminary results of model fitting and cross-validation 
techniques show that the proposed model is a potential tool to 
estimate the soil moisture at high resolution.      
 

 
6.  ACKNOWLEDGEMENTS 

 
This research has partially been supported by the NOAA-CREST 
grant NA17AE1625 and NASA-EPSCoR grant NCC5-595, and 
also by the University of Puerto Rico at Mayaguez.  Authors want 
to appreciate and recognize the funding support from these 
institutions. 

 
7.  REFERENCES 

 
Balsamo, G., Bouyssel. F., and Noilhan, J. (2004).  A Simplified 

bi-dimensional varaitional analysis of soil moisture from 
screen-level observations in a mesoscale numerical weather-
prediction model.  Q.J.R. Meteorol. Soc. 130, pp 895-915. 

 
Box, G.EP., and Jenkins, G.M., (1976).  Time Series Analysis: 
      Forecasting and Control, Holden-Day, Oakland, CA. 

 
Brockwell, P.J., and Davis, R.A., (2002).  Introduction to Time 

 Series and Forecasting, Second Ed., Springer, New York. 
 
Comarazamy, D.E., (2001).  Atmospheric Modeling of the 

 Caribbean Region: Precipitation and Wind Analysis in 
Puerto Rico for April 1998,  Master Thesis, Department of 
Mechanical Engineering, University of Puerto Rico, 
Mayaguez, PR. 

 


