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Abstract-The last experiences showed that spectral data 
have not sufficient to classify forest types in the 
mountainous area. In order to clear abilities of spatial 
models to classify forest types and improve results, an 
investigation was planned in a case study in the northern 
forests of Iran by ETM+ data. The spatial models based 
on aspect, elevation, incorporated aspect-height and 
homogenous units constructed for each type individually. 
Probability occurrence rates of types were extracted in the 
each class. Classification was accomplished with the best 
spectral data sets by maximum likelihood classifier using 
only spectral data and with spatial models separately. The 
accuracy of results was assessed with a sample ground 
truth map. The results showed that spatial models could 
improve considerably results in compare with only 
spectral data (14%). This study exposed that spatial 
models based on the homogenous units in compare to 
other models could better improve classification. 
 
Keywords: Forest Type, Classification, Spatial models, 
Improvement, Maximum Likelihood. 
 

1. INTRUDUCTION 
 

The Caspian zone forests, which also called the Hyrcanian 
forests, are the most valuable forests in Iran. They cover the 
northern slops and foothills of the Alborz Mountains. Iran has 
forests with an area of nearly 12.4 mil. ha, it has various 
geographic conditions, producing different forests of various 
tree and shrub species and production capacity in different 
edapho- climatic conditions (FAO, 2002). The species such as 
Beech (Fagus Orientalis), hornbeam (Carpinus Betelus), 
Alder (Alnus Glutinousa), Oak (Quercus castaneafolia), 
maple (Acer Velotonia), Ironwood (Parotia Persica) are main 
trees. These forests are very complex and mixed due to 
specific topographic, edaphic, climatic and ecological 
conditions. Mapping forest variables such as types and stands 
is fundamental for forest management. However, forest types 
mapping trough current fielding ways, is time consuming and 
cost-intensive. Using satellite Imagery and its potentials are 
posed tools for mapping forest-covered area. Forest extent 
mapping is almost possible by satellite data in the northern 
mountainous forests of Iran (Darvishsefat and Shataee, 1997). 
The next expectation for whom was feasibility investigation 
on forest types classification and producing executive forest 
types maps. The last results were exposed that discrimination 
of forest types that are compound only with one species, as 
pure types are very successful when uses satellite data 
(Walsh, 1980). While a forest type is comprised with two or 
many species in the forests such as study area, it will be 
difficult to separate them each other’s (Shataee, et al., 2004). 
Yet spectral signatures used in supervised classifications may 
overlap considerably, making effective discrimination 
unachievable based on spectral reflectance characteristics 

alone. Make an attempt on the improvement of classification 
result was main objective for who were interested forest type 
mapping using satellite data. Many attempts were performed 
using different techniques such as rule-based classification 
(Bolstad and Lillesand, 1992), incorporated domain 
knowledge and using ancillary data (Hutchinson, 1982). 
Information from ancillary data sources has been widely 
shown to aid discrimination of classes that are difficult to 
classify using remote sensing data (Apisit, et al., 2000; 
Hopkins et al, 1988; Hutchinson, 1982; Strahler, 1980). In 
theses cases, ancillary data sources and expert knowledge’s 
related to spatial distribution of types can provide useful 
information to help distinguish between inseparable classes. 
Using ancillary data related with forest could improve results 
(Brockhaus, et al., 1992; Franklin, 2001; Hopkins, et al., 
1988). Determination and delineation of environmental 
factors, which have effective role on the spatial distribution of 
types or groups of homogeneous species, is first step to 
incorporate this non-spectral data with spectral data. Finding 
of suitable technique to integrate and incorporate these data is 
the last step. The distribution of forest types can be affected 
by general landscape characteristics, such as soil and micro 
climatic, as well as specific terrain related features such as 
elevation, slope, and aspect. These elements can be 
considered as indicators of species composition and 
distribution. Hence, the variables may be incorporated into 
prediction models to estimate likelihood of type’s occurrence. 
These spatial predictive distribution models can help more 
accurate make decision to belong a class to a pixel by 
algorithm based on accurate location and distribution range of 
forest types. One of the ways to incorporate ancillary 
information is using prior probabilities of classes’ 
memberships. Also, the Maximum Likelihood classifier is 
based on the probability density function associated with a 
particular training site signature. Pixels are assigned to the 
most likely class based on a comparison of the posterior 
probability that it belongs to each of the signatures being 
considered. The Maximum Likelihood is also known as 
Bayesian classifier, since it has the ability to incorporate prior 
knowledge using Bayes' Theorem (Richards, 1993): 

 
P (h/e) = p (e/h)* p (h) / ∑P (e/h * p (h) 

Where:            
P (h|e) = the probability of the hypothesis being true given the 
evidence (posterior probability)  
P (e|h) = the probability of finding that evidence given the 
hypothesis being true (derived from training data) 
P (h) = the probability of the hypothesis being true regardless 
of the evidence (prior probability)  
Bayesian model uses Bayes theorem to combine the 
information in the data with additional, independently 
available information (prior) to produce a full probability 
distribution (posterior distribution) for all parameters 
(Congdon 2001, Gelman et al. 1995, Carlin and Louis 2000).  



When no knowledge exists about the prior probabilities with 
which each class can occur, it assumes that prior probabilities 
should be considered as equal for each class (Lo and Watson 
1998). If there is reasonable knowledge of the expected 
proportional area of each class over the image as a whole, it 
can specify a prior probability value for each class (Pedley 
and Curran, 1991, Maselli, et al., 1995). In addition, prior 
probabilities can also be entered as a separate real number 
image (values between 0-1) for each class. This allows 
incorporating spatial models to determine prior probabilities 
of each class. In the mountainous forests and complex forest 
sites like this study area, forest types commonly are related 
with many variables. These variables will prepare specific 
ecological conditions for each type, which, are expressed as 
homogenous units. Determination of occurrence rate of each 
type in homogenous units and construction of this spatial 
model to incorporate with remote sensing data may be 
improve classification results more than use of each variable 
individually. Thus, specification of type characters in 
exchange for species characters can better help to construct 
spatial models. This paper presents application of integrating 
different spatial models, created with topographic parameters 
to improve the classification results. Investigation on how the 
spatial models incorporate with spectral data and how much 
can improve the classification results in comparison with only 
using spectral data were other objectives in this study.  
 

2. METHODS 
2.1 Study Area 
The study area is located at research forest of Tehran 
University in the north of Iran between 51°33’12”E and 
51°39’56” E longitude and 36°32’08” N and 36°36’45 5” N 
latitude. The study has performed on three districts that are 
about 3000 hectares (figure 1).  
 
 
 
 
 
               
 
 
 
 
 
 
Figure 1: Location of study area in the north of Iran. 
 
2.2 Data 
In order to investigate ETM+ data potential for forest types 
mapping, a small window on 164-35 Scene from 2nd August 
2000 was selected. In addition, some ancillary data extracted 
DEM such as aspect and elevation maps were resized to 
spatial resolution of satellite data.  
 
2.3 Ground Truth 
For accuracy assessment, a sample ground truth of forest 
types was designed and generated. The one-hectare area 
sample plots were distributed systematically throughout study 
area. In the each plot, diameter and kind of species all trees 
were measured. Finally, 193 plots were measured in the study 
area. Based on experiences, trough computing of 100 thick 

trees and percent of species frequency, kind of forest type has 
been determined in the each plot. In addition to plantation 
area, six forest types were recognized by this method. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Sample ground truth map of forest types 
 
2.4 Pre Processing and Processing 
The ETM+ bands were geo-referenced in two steps. First, 
panchromatic band was geo-referenced by a digital 1:25000 
map and ground control points. Then, other images have been 
geo-referenced using image to image technique. The final 
RMSe was found about 0.54 pixels. All images corresponding 
to ground truth map were resized to 10 meters resolution by 
second order transformation and cubic convolution re-
sampling method. Some suitable processing image analyses 
were applied to create the new artificial bands. The Tasseled 
Cap calculation were accomplished to calculate brightness 
and greenness component, Principal Component analysis to 
extract the components which have more information and 
some suitable ratioing transformations which can be reduce 
the topographic effects. These bands were used together with 
ETM+ images as spectral data. 

3. RESULTS 
 

3.1 Classification with Spectral Data 
In order to comparison of using spectral data only with 
integration of spectral and ancillary data, classification of 
ETM+ bands and some artificial bands was accomplished to 
extraction of forest types. For supervised classification, some 
pixels were selected randomly as training area for each type. 
Finally, the best bands set were selected based on spectral 
properties of training area by Bhathacharya index (table 1).  

 
Table 1: The ETM+, Artificial Bands   

ETM+ 
Bands Artificial Bands 

1, 2, 3, 
4, 5,7 
and   
Pan 

PCA1, PCA2, PCA3, Brightness, Greenness, 
Ratio(NIR-G), Ratio(NIR/G), 
Ratio(NIR/R+G), Ratio(NIR-MIR/NIR+MIR), 
Ratio(NIR -R/ NIR +R) 

 
Since, the maximum likelihood classifier has been reported as 
a suitable classifier (Hopkins, et al., 1988; Williams, 1992; 
darvishsefat, 1994; Shataee et. al, 2004), it was applied to 
classify forest types. 
 
3.2 Determination of Parameters Related to Forest Types 
To construct models, it should be first specified which 
parameters are more effective on the spatial distribution of 
types. This information can be extracted from different ways 
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such as sample plots. Since a considerable sample ground 
truth has been prepared at this study, they have been extracted 
from these sample plots. In addition, some of forest 
researchers have expressed that topographic parameters have 
strength correlation with forest types (Asadollahi, 1987). 
Based on, a digital elevation model (DEM) was generated 
using 1:25000 map. The elevation, slop and aspect maps with 
giving classes were extracted from DEM. These maps were 
crossed with ground truth map to specify correlation between 
parameters and types. The primary results showed that 
elevation are more effective on forest types compared with 
other topographic parameters (table 2). 

 
Table 2: Occurrence Range of Forest Types in Study Area 
Forest types Elevation (m) Aspect Slop 

Pure Fagus 1100-1350 All aspect 0-40 % 
Mixed Fagus 400-1300 All aspect 0-40 % 

Pure Carpinus 700-800 Southern 0-40 % 
Mixed Carpinus 400-1350 All aspect 0-60 % 

Mixed Alnus 1100-1300 West southern 7-40 % 
Mixed 0-1300 All aspect 0-100 %

 
Based on table, it has been certainly made that the distribution 
of forest types has not correlated with only one parameter and 
it has a complex relation with other parameters. At result, it 
seems that using of one-parameter spatial models with 
spectral data may not improve classification results more than 
two or multi- parameters models. With these concepts, it was 
concluded that multi-parameters topography spatial models 
like those constructed by homogenous units may be improve 
the results. Regard to these information, it was investigated 
that which of the spatial models constructed by each of this 
parameters can be improve the results in comparison with 
using spectral data only. Based on this, the spatial models 
were constructed for each parameter separately and or 
incorporated as multi parameters. 
 
3.3 Classification with Aspect Spatial Model  
In the natural forests, distribution of forest types also is 
correlated with aspect. In this study was tried to compute the 
prior probability of forest types based on aspect and was 
investigated to improve classification by using of spatial 
distribution models. An aspect classes map was extracted 
from DEM. The occurrences rates of forest types in the each 
aspect classes was computed as same as elevation (table 4). 

 
Table 4: Occurrences Rates of Types in the each Aspect Class 

 

Total 

Pure 
Fagus
M

ixed 
Fa gus
Pure 

C
arpin
us

M
ixed 

C
arpin
us

M
ixed 

A
lnus

M
ixed 

R
eplan

t area
Forest 
types/ 
A

spect 
classes 

1 0.04 0.53 0 0.13 0 0.24 0.06 N 
1 0.14 0.61 0 0.11 0 0.12 0.02 EN 
1 0 0.46 0 0.15 0 0.32 0.07 E 
1 0.07 0.08 0.02 0.47 0 0.32 0.04 ES 
1 0.06 0.23 0.02 0.43 0.01 0.25 0 S 
1 0.02 0.36 0 0.38 0.01 0.22 0.01 WS 
1 0.03 0.46 0 0.26 0 0.23 0.02 W 
1 0.09 0.47 0 0.29 0 0.13 0.02 WN 
1 0.34 0.23 0 0.43 0 0 0 F 

 
Based on these prior probabilities, for each forest type a 
spatial predictive model was created as image. Classification 
of forest types has been accomplished using integration of the 
best band set and spatial predictive imagery models.  
 
3.4 Classification with Elevation Spatial Model  
To determine the occurrence prior probability rates for each 
type in each height class (table 3), they were computed by: 

 
P (f/h) = N (f/h) / ∑ N (fi/h) 

Which: 
P (f/h) is probability of type A in height classes 
N (f/h) is number pixel of type A in height classes 
∑ N (fi/h) is total pixels number of type A in each height class 
 
Table 5: Occurrences Rates of Types in the each height Class 

Total 
Pure 

Fagus
M

ixed 
Fagus
Pure 

C
arpinu

s
M

ixed 
C

arpinu
s

M
ixed

A
lnus

M
ixed 

R
eplant 
A

rea
Forest 
types/ 
H

eight 
classes

10 0 0 0 0 1 0 0-100 
10 0 0 0.37 0 0.63 0 100-200 
10 0 0 0.17 0 0.83 0 200-300 
10 0 0 0.63 0 0.37 0 300-400 
10 0.210 0.35 0.050.27 0.12400-500 
10 0.540 0 0 0.46 0 500-600 
10 0.330 0.28 0 0.36 0.03600-700 
10 0.380.050.42 0 0.13 0.02700-800 
10 0.280 0.57 0 0.12 0.03800-900 
10 0.520 0.33 0 0.15 0 900-1000
10 0.460 0.29 0 0.25 0 1000-1100
10.120.3 0 0.29 0 0.18 0.021100-1200
10.1 0.510 0.19 0.020.18 0 1200-1300
10.240.130 0.55 0 0.08 0 1300-1400

 
For this reason, the digital elevation model was classified to 
100-meters classes. Resultantly, a spatial predictive model 
was created for each forest type (figure 3). These images had 
values, which showed prior probabilities rates for each forest 
type in the height classes. Classification has been 
accomplished using integration of the best band set and spatial 
predictive imagery models.  
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: One of the height spatial models for pure fagus 
 
3.5 Classification with Spatial Model Based on Integration 
of Aspect and Elevation 
As it expressed before, distribution of forest types is note be 
related with only one parameter. It means that forest types can 



not be separable only using one index or parameter. At result, 
it seems that using multi-parameters spatial model may be 
improves better the classification results when it is integrated 
to spectral data. With this assumption, a spatial model was 
constructed by incorporating of aspect and elevation 
parameters. This spatial model was built as follow: 
1) Adding aspect and height occurrence image that 
subdivided two created aspect-height occurrence images. 
2) Height probability image was built on condition 
where each forest type is occurring will be “1” and other 
places will be “0”. 
3) Spatial distribution model was obtained by 
multiplication of 1and (2) step images. 
Therefore, aspect-height spatial models were created for each 
type separately. Classification has been accomplished using 
integration of the best bands and these spatial models.  
 
3.6 Classification with Homogenous Units Spatial Model  
Homogenous units are places where have equal conditions 
regarded to some variables such as aspect, height or slope. In 
the mountainous lands, some different aspects can be finding 
in the each height class. Regard to impact of aspect on the 
distribution of forest types, the occurrences rates of forest 
types can be also different in a given height class. With these 
reasons, the homogenous units were created by crossing of 
height and aspect class maps. Corresponding to last ways, the 
occurrence rates of types have been extracted. Then, 
homogenous spatial models were built for each type. 
Classification has been accomplished using integration of the 
best band set and homogenous unit spatial predictive imagery.  
The accuracy assessment of results was done with sample 
ground truth and was compared with result of classification 
using only spectral data (table 5).  
 

TABLE 5: Results of Accuracy Assessment 
  

Method/ 
Accuracy 

(%) 

Only 
spectral 

data 

Aspect 
spatial 
models 

Height 
spatial 
models 

Height-
aspect spatial 

models 

homogenous 
units models

Overall 
accuracy  49.68 56.28 57.65 58.34 60.87 

Overall 
Kappa  27.5 34.08 34.78 36.56 41.22 

 
4. DISCUSSION AND CONCLUSION 

 
In compliance with others research results, this study are also 
showed that using only spectral data is not advantageous to 
classify classes in the mountainous places, where separating 
species are difficult. Resultantly, they should be integrated 
with non-spectral data or should be used other techniques. 
The to be low overall accuracy of 49.68 % or kappa 
coefficient of 0.275 for using only spectral data is confirmed 
these documents.  
This study confirmed that using topographic data related with 
classes could improve results as it before reported by other 
researchers (Janssen et al., 1990). The primary results of 
showed that elevation parameter is more effective on the 
forest types distribution in comparison with other topographic 
parameters i.e. aspect and slop. Results showed that slop 
parameter is not a parameter which can stratify forest types. 

As results are exposed, using ancillary data as prior 
probability imagery could imported into classification 
processes. Compared with spectral data, these spatial 
predictive models could improved classification results and 
increased the overall accuracy from 6.5 to 11 percent and 
kappa coefficient from 6.5 to 14 percent. 
Using only spatial predictive model based on aspect could 
improve the overall accuracy about 8 percent that it was a 
significant increment in accuracy compared with spectral 
data. This increment generally refers to role of aspect 
parameter on accurate addressing of some types and 
increment of occurrence probability for them.   
With constructing of spatial predictive model based on height 
parameter and integration this model with spectral data, it was 
specified that increment of overall accuracy was very poor, 
about 1 (%) more than aspect and there is no significant 
improvement compare to aspect. This result exposed that 
aspect and height have almost equal impact on the distribution 
of forest types. This refers to be equal impact on the 
formation of forest types or grouping establishment of species 
that comprise a forest type.   
Incorporated spatial predictive model based on aspect and 
height considerably could not improve classification results. 
Although an about two percent increment have been found in 
the overall kappa compared with using of aspect and height 
spatial models but, results was not attractive.  
Creating homogenous units based on aspect and height and 
using as spatial predictive model with spectral data showed 
that classification results could be significantly improved 
about 11 percent in overall accuracy and 14 percent in overall 
kappa. From these results can conclude that each spatial 
model, which can accurately specialized spatial addresses of 
forest types occurrences or determine the distribution of forest 
types on the appreciate related parameters, could have ability 
to improve results when integrated with spectral data. 
In despite of the overall accuracy of both spectral data and 
integration of spectral data and spatial data results are 
generally low and insufficient to illustrate for application, but 
results emphasize on the considerable improvement. These 
hopeful results encourage us to investigate other techniques 
and methods that may improve classification results so that it 
would be feasible to apply for forest management.  
Due to not to be access other parameters which, are related 
with spatial distribution of forest types such as soil 
information, future research can be performed with these kind 
of information or geographical knowledge to integrate with 
spectral data. Using other methods such as rule-based 
classifier or expert system should be investigated to increase 
results until an executive method can be obtained using 
satellite data.  
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