Lidargrammetry

Direct Exploitation of Stereo Imagery Generated from Lidar Data

Mark Brooks (MD Atlantic) Brad Herman (NIIRS10) Martin Flood (NIIRS10)

Outline

- Motivation
- Concept of Inferred Stereo Pairs (ISP)
- Lidar Imagery
- Workflow Comparisons
- Quantitative Observations
- Further Investigations

Motivation

- Directly integrate proven (accepted) photogrammetric workflow with the accurate terrain information available lidar.
- Enable the deployment of lidar while still exploiting an organizations:
 - Existing environment (infrastructure).
 - Current skill sets (people).
 - Client satisfaction with proven and accepted processes (reputation).

Motivation

Directly photogra accurate lidar.
 Enable t

dar white ons:

Motivation

- Investigate improvements to overall workflow efficiencies.
- Determine if an end-to-end 'lidaronly' workflow for creating established mapping products is practical.
- Quantify any cost reductions.

Inferred Stereo Pairs (ISP)

- By creating a second image from a orthorectified source image and an elevation model, a traditional stereo pair can be inferred.
- With lidar data, the readily available elevation values and additional information such as intensity, make this concept relatively easy to implement in software.

ISP Generation

- ISP generation requires a single orthorectified image and an underlying terrain model as input.
- Introduce parallax (displacement of the image pixels in the X direction) in a second inferred image.
- The parallax is proportional to the difference of the actual elevation value for a pixel from a fixed elevation value (average).

ISP Exploitation

- Images can be viewed as a stereo model in standard photogrammetric software (with the appropriate math model).
- Production technicians can use established viewing, measurement and compilation techniques.
- In practice, parallax is split between two new inferred images.

Lidar Imagery

- Extremely rapid timeline from sensor to exploiter (hours).
- □ Independent of lighting conditions.
 - Acquire at night and/or under clouds.
- □ Orthographically correct.
- Exploit with existing image display hardware and software infrastructure.
- Iterative refinement scheme allows selective improvement of specific Areas of Interest.

Lidar Imagery

Lidar Stereo Imagery

- Provides for enhanced interpretability of features in a 3D viewing environment.
- Stereo images provide much faster manual extraction environment for a production operator versus point display.
- Exploit with existing stereo workstation hardware and software infrastructure.
- Extracted features are 3-Dimensionally correct at time of collection.

In-Flight Parameters Effect Lidar Imagery

ISPRS WGI/2 Banff Workshop June 8-10, 2005

Photogrammetric Workflow

Lidar Workflow

'Lidargrammetric' Workflow

ISP Workflow (GeoCue)

- After tiling and segmentation of lidar data.
- Define Stereo models (recommend 5000x5000 point spacing).
- Assign image generation parameters.

ieneral	Intensity	Elevation	Class	Returns	Strips	Voids
Working Segments					Segment Layer	
Geome Pixel Si	etric Parame ize: 1.50	ters Base/Height: 0.4	Base	Elevation: 80.00	Unit: Mete	F
Image	Туре					
Grayso	ale	~		Modulate I	Using Int	ensity
Returns	s: Last	~	Adjust Ir	ntensities [Automati	c 💌
Rasteri	zation Meth	od				
Interpo	olation	~	Max Are	a: 1	0 sq-	Meter
Feature	e File				1.5	
None (use previou	ıs assignment	t) 🗸	•		

ISP Workflow (GeoCue)

- Generate test stereo pair.
- View and qualify usability.
- Make adjustments & repeat as necessary.
 - Base to height ratio.
 - Adjust intensity values.

ISP Workflow (GeoCue)

- Assign parameters to remaining stereo models.
- Generate stereo models for entire project.

ISPRS WGI/2 Banff Workshop June 8-10, 2005 Current Applications in Production

Breakline delineation for terrain modeling (improved contours).

- Planimetric feature capture.
- □ Classification QA/QC.

Qualitative Observations

- Requires a dense data set for accurate image creation.
- Collection parameters critical to intensity image quality.
- Breaklines collected from 2 meter posting lidar data is equivalent to 1"=200' scale imagery (horizontally).
- Low vegetation causes some problems in stereo models.

Qualitative Observations

- Collection area (coverage per ISP) can be larger than traditional imagery so less setups need per project.
- No need of importing point data to find anomalies.
 Too easily?
- Resulting vector set is very light and easily 'roamable'.
- Regeneration of 'problem' areas or areas of interest with greater stereo exaggeration is very easily accomplished.

Qualitative Observations

- □ Shorelines not obscured by vegetation.
- Actual horizontal positioning of a water body is more accurate than from corresponding imagery.
- Can measure more accurate water level.
- Hydro breakline locations and flow direction very easy to determine.

- Work with increased resolution lidar imagery.
- Examine 'class-based' stereo images.
- Use color images created by blending intensity/elevation or intensity/classification.

ISPRS WGI/2 Banff Workshop June 8-10, 2005

- Fusion of lidar imagery with other imagery in stereo.
- Advantages as supplement to automated feature extraction.
- □ Work with legacy/historical data sets.

- Enable manual re-classification in stereo workstation:
 - Bounding polygons, similar intensities, etc.
 - Hooks between TerraSolid, GeoCue and stereo viewing software.
- Automated' 3D Feature Exclanation
 - Similar features, colors and et

tions

Eliminates the difference between 'lidar editors' and 'stereo compilers'.

Discussion

