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Abstract— A statistical inversion method is presented 
in support to the application of kernel-based BRDF 
(Bi-directional Reflectance Distribution Function) 
models for the calculation of the surface albedo. We 
present an operational procedure for the inversion of 
kernel-driven BRDF model and further albedo 
retrieval to be applicable to the SEVIRI/MSG 
reflectance measurements. The processing steps 
applied to space-borne POLDER sensor data were as 
follows: 1) quality control, 2) accumulation of a priori 
information on model coefficients of directional 
hemispherical reflectance, 3) implementation of the 
BRDF model inversion methods based on the biased 
estimation instead of usual non-biased least solution, 
which has too big variance.  
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1. INTRODUCTION  
 

The determination of a surface albedo product requires 
the implementation of a number of data processing steps in 
which the cloud screening and the removal of atmospheric 
effects, merely water vapor content and aerosols loading, 
must concentrate our efforts. Furthermore, satellite systems 
provide a sparse angular sampling of the Bi-directional 
Reflectance Distribution Function (BRDF) when a 
hemispherical knowledge of this latter is necessary to 
derive an albedo variable. Embarked on a sun-synchronous 
platform, the AVHRR sensor scans everyday the same 
target under varying viewing conditions and similar sun 
geometry. After a few days, it provides a sampling of the 
BRDF close to the principal plane – the plane containing 
the sun and the target – in both forward and backscattering 
directions. On the other hand, the SEVIRI/MSG mission, 
as it is the characteristic of geo-stationary sensor systems, 
will provide a large variety of solar angular measurements 
but at fixed view zenith angle and for various sets of 
relative azimuths. In this latter case, the BRDF sampling 
will be a warping of the perpendicular plane in the 
backscattering area, away from the tropical belt and at the 
exception of the summer season. It is anticipated that the 
lack of having data in the principal plane – where angular 
effects are amplified – will lead to biased estimates of the 
BRDF and thereby surface albedo. Since only restricted 
angular sampling for land surface reflectance 
measurements is available, it yields a difficulty to calibrate 
BRDF models. In many cases the ill-conditioned index (ICI 
- the ratio of minimum to maximum eigen-values of matrix 
to be inverted) lies in the interval of small values. 
Therefore, the retrieved BRDF model coefficients are 
sensitive to small perturbations in the reflectance values 
registered by the satellite sensor. As a result there is a 
possibility to obtain unphysical solutions. In some respect 
this situation might be improved by the selection of optimal 
angular subsets providing higher ICI values than its initial 
values (Pokrovsky and Roujean, 2002 a). But, nonetheless, 

inevitable contamination of measured signal coming from 
the land surface through the atmosphere becomes a 
question of a serious concern. Any atmospheric correction 
module cannot solve this problem principally because of 
frequent impact of partial cloudiness, which is not properly 
detected by existing remote sensing methods (Bicheron and 
Leroy, 2000) and cannot be described by radiation transfer 
methods. This paper is aimed to consider above problem 
with application to SEVIRI/MSG geometry case. 

2. DATA QUALITY CONTROL 

2.1 Measurement Data  
We note b the vector standing for coefficients ki=0,1,2 of 

the BRDF parameter model. The traditional Gauss-Markov 
regression model reads: 

                εbAy +⋅=    (1) 
Having y as an n-by-1 vector of measurements, A as a 

given n-by-p matrix of predictors, b as a p-by-1 vector of 
model coefficients to be estimated, ε  as an n-by-1 vector 
of random disturbances having unknown variance matrix of 
standard form, IΣε

2σ= . Usually, the model (1) is 
related to the minimization of the quadratic norm of 
residual vector 
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In (2), y!  stands for vector of the model predictor. 
Then, a possible estimate of b is: 

                   yA.A)(A b ⋅⋅= − T1T!
                        (3)  

(‘T’ is a sign of transpose and ‘-1’ a sign of inverse matrix). 
However, this definition has poor numerical properties. 
Particularly dubious is the computation of (AT.A)-1, which 
is both costly and imprecise. To avoid those difficulties, 
most prevalent methods are the singular value 
decomposition (SVD) and QR decomposition of A, 
A=Q.R, where Q and R are the orthogonal and triangular 
matrices, respectively (Pokrovsky and Roujean, 2002 b). 
The residue in (2) might be rewritten in the following form: 

       ε)A)A(AA(Ir ⋅⋅⋅⋅−= − T1T                  (4) 
We consider now the residual in more details and begin 

the demonstration with the simple case of having a single 
angular measurement iy . The posterior probability density 
function (pdf) for a single element of residual, say 
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an univariate Student-t pdf with ν  degrees of freedom. 
Note that the posterior mean of (5), which is a least square 
residual, is its optimal estimate relatively to a quadratic loss 
function appeared in method of least squares. 

We assume that in (5)-(6) the estimate for 2σ is used 

in form of )/(2 pns T −⋅= rr !! . In other words, the 

estimated standard deviation of the i-th residual 
i

r  is is , 

where 2

i
s is the i-th diagonal element of the covariance 

matrix for (4). 
The statistical tests to detect outliers in linear models 

were the focus of a number of studies. Most of them were 
based on obtaining residuals standardized by their 
individual standard deviations (Draper, and Smith, 1981). 
A main advantage of this test procedure is its simplicity in 
regard to its general degree of application to any linear 
models without the necessity of a re-analysis of the 
suspected outlier either omitted or treated as missing. 
Determination of the exact percentage points of test 
statistics is based on the standardized residual ( )

i
s

i
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Tietjen et al (1973) proposed a test procedure for the 
detection of a single outlier in a simple linear regression 
model and determined critical values of test statistics:               
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using large-sized samples. Critical values of 
n

R for 

significance levels 01.0,05.0,1.0=α  were given for a 
range of sample size up to n=100. We consider also here 
alternative statistics for the present case of BRDF linear 
model: 

. 

2.2 Output Coefficients 
The classical work in field of computerized data 

screening related to census data has been carried out by 
O’Reagan (1969). Later, there has been an expansion in the 
use of bases consisting of vectors of data following 
multivariate distribution (Gnanadesikan, and  Kettenring, 
1972). This and other following papers were based on 
implementation of the generalized likelihood ratio T 
statistics of Hotelling (Anderson, 1958). We used here a 
similar statistical procedure to reveal strange BRDF model 
coefficient patterns. Let the vector b represent a set of 
observations distributed in accordance to the normal law 

)(
b
Σ,bN . As we obtained some sample of BRDF 

coefficient sets, it is easy to compute the estimates for both 
of them: vector of means b  and covariance matrix 

b
Σ . 

So, we may assume that b  and 
b
Σ  are known. We also 

suppose that after simple transformation b and 
b
Σ  have 

been scaled to zero means and unit variances. Let 
ebb +=~  be the input vector to be tested. Here e  is a 

vector of data capture errors. Then the screening of 
b~ consists of a test of null 

o
H hypothesis 0e =:

o
H . 

One possible alternative hypothesis to  is 0e ≠:
1

H : it 

means that an arbitrary error vector is present. In this case 
the test statistic indicated is the generalized likelihood ratio 
T statistics: 
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which has a good performance for a wide class of error 
vectors e  (Anderson, 1958). The preceding discussion is 

based on the implicit assumption that b and 
b
Σ are 

known. In practice, it will be rarely the case. Currently, we 
have available some a priori sample of N vectors, which 
have been verified manually and assumed to be accurate. 
From this sample we compute estimates b

"
and 

b
S  and 

use these estimates in place of b and 
b
Σ . A serious 

question then arises as to how large N must be for this 
substitution to yield acceptable accuracy in the distribution 
of test statistics. In the case of T, the distributional problem 
is well investigated (Anderson, 1958).  In fact, if b

"
and 

b
S are used in place of b and 

b
Σ , then T is computed in 

accordance to (8) as )()( 1 bbSbb
b
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arbitrary incoming data vector b . 

3. COMPARISON OF INVERSION TECHNIQUES 
 

The Least Square (LS) solution of (1) can be obtained 
by minimization of cost function 

)(1)(min ybAεΣybA
b

−⋅⋅−⋅−⋅ T (see (Pokrovsky, 

O.M., and J.L. Roujean, 2002 b)), with IεΣ
2σ= . Bayes 

formulas for conditional probability permit to come to the 
generalized form for the cost function when we dispose of 
a priori statistics: 
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Minimum of (9) is a regularized solution of problem (1). 
Details on numerical algorithms related to (9) can be found 
in (Pokrovsky O.M., 1984). 

Hoerl and Kennard (1970) suggested to use the ridge 
regression, as a procedure for dealing in the case of multi-
collinear columns of matrix A in a regression model like 
(1). Their ridge estimator of the standardized (Anderson, 
1958) regression model coefficient vector is  

 yAI)AA)(b ⋅⋅⋅+⋅= T-1T ββ (
!

                 (10) 

where β is a positive constant and AA ⋅
T  is in correlation 

form (Anderson, 1958). The selection of parameter β yields 



the major issue. Most studies on this subject suggested 
more or less empirical rules, according to the problem to be 
solved. Here, we use the  acceptability conception as a 
background for more substantiated selection rule. One 
example of inversion technique comparison is presented at 
fig.1. It showed that ordinary LS solution (statistical 
inversion) provides unphysical solution for albedo retrieval 
and alternative methods: statistical regularization and ridge 
regression permit to obtain solutions, which are in 
reasonable agree with land surface measurement data.  

4. CONCLUDING REMARKS 
An innovative work has been presented in which 

routines were developed for control procedure to detect 
outliers at input and output stages of the BRDF model 
inversion based on both statistical and physical criteria. 
Two principal statistics frequently used in multiple 
regressions were considered: the model explained variance 
and the ratio Fisher statistics. Another important step was 
the accumulation of BRDF model coefficients and albedo a 
priori statistics. This statistical information permit us to sort 
out a more sophisticated inversion technique. In fact, the 
filtering procedure for outliers is more specific to sensor 
characteristics than models. 

The ill-posed problem of kernel matrix inversion could 
be solved based on the ridge regression and other biased 
estimates in order to increase the reliability of biophysical 
parameters. It is worth noting that ill-conditioning does not 
only rely on restricted angular sampling but also occurs 
when co-linear kernels are considered. Further 
improvements in albedo retrieval will be to perform an 
optimal selection of kernels for composite model and to 
adapt SR method to composite model. 

 

 

 

5. Acknowledgments 
This work has been performed in the framework of the 
Satellite Application Facilities (SAF) program, which is 
supported by the European Meteorological and Satellite 
(EUMETSAT) agency and by the National Meteorological 
Services. We also thank Météo-France for technical 
assistance. Oleg Pokrovsky and Igor Pokrovsky received a 
financial support from EUMETSAT as a Visiting Scientists 
at CNRM. Jean-Louis Roujean is with the Centre National 

de la Recherche Scientifique. This study was also 
supported by Russian Fond of Background Research grants 
01-05-65283 and 02-05-64 757. 

 
  References 

 
Anderson, T.W., 1958, An Introduction to Multivariate 
Statistical Analysis, N.Y., John Wiley and Sons Inc., 548 
p. 
Bicheron, P., and M.Leroy, 2000. BRDF signatures of 
major biomes observed from space. J. Geophys. Res.,v. 
105, p.26669 - 26681. 
 Draper, N. and H. Smith, 1981, Applied regression 
analysis, second edition, N.Y., John Wiley and Sons Inc., 
1981, 467 p. 
Gnanadesikan, R. and J.R. Kettenring, 1972, Robust 
estimates, residuals and outliers detection in multi-
response data., Biometrics, v.28, p.81-124. 
Hoerl A.E., and R.W. Kennard, 1970, Ridge regression: 
biased estimation for non-orthogonal problems., 
Technometrics, v.12, p.55-67 
Pokrovsky O.M., 1984. Meteorological Remote  Sensing 
of the Atmosphere from Satellites.-Leningrad, 
Hydrometeoizdat , 287 p. 
Pokrovsky, O.M., and J.L. Roujean, 2002 a, Land surface 
albedo retrieval via kernel-based BRDF modeling: II. An 
optimal design scheme for the angular sampling , Remote 
Sens. Environ., 84, 120-142. 
Pokrovsky, O.M., and J.L. Roujean, 2002 b, Land surface 
albedo retrieval via kernel-based BRDF modeling: I. 
Statistical inversion method and model comparison., 
Remote Sens. Environ., 84, 100-119.. 
Tietjen, G.L., Moore R.H. and Beckman R.J., 1973. 
Testing for a single outlier in simple linear regression. 
Technometrics, v.15, p.717-721 
O’Reagan, R.T., 1969, Relative cost of computerized error 
inspection plans., Journal of American Statist.Assoc., 
v.64, p.1245-1255. 
 


