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Abstract – This study focuses on the use of coarse spatial 
resolution (CR, pixel size about 1 km2) remote sensing data for 
land cover change detection and estimation. Since, in the 
presence of some changes, both the multitemporal class 
features and the pixel composition in terms of classes are 
unknown, the proposed algorithm is based on the iterative 
alternate estimation of each unknown variable: class features, 
and pixel composition. Final estimation of the pixel 
composition is constrained using a Markovian chain model, 
introducing the previous land cover map as a 'memory' term. 
This approach has been validated both using simulated data 
and actual data (SPOT/VGT and NOAA/AVHRR). The 
thematic application was the study of the evolution of an 
agricultural watershed during the last two decades. 

Keywords: Change detection, land cover monitoring, coarse 
resolution, SPOT/VGT. 

1 INTRODUCTION 

Digital change detection deals with the quantification from multi-
date imagery, of temporal phenomena, such as Aforestation-
Reforestation-Deforestation, agricultural field rotation, abnormal 
evolution of the land surface, such as hydric stress effects on 
canopies, or natural disasters such as fires or floods. 

In the case of high resolution data (pixel size lower than 30×30 m2  
such as SPOT/HRV or LANDSAT/TM), numerous change 
detection methods have been proposed (e.g. from Singh, 1989 to 
Le Hégarat-Mascle and Seltz, 2004). However, for large area 
processing, the survey is preferably done using coarse resolution 
(CR, pixel size about 1 km×1 km) sensors, such as the 
NOAA/AVHRR or the SPOT4/VEGETATION sensor (referred as 
SPOT/VGT in the following). Their spectral channels include a 
visible, a near infra-red and a medium infra-red band, and even 
some larger wavelength bands. Moreover, their high time 
repetition rate allows the formation of data series that can be used 
for the characterization of the main land cover types (bare soil 
surfaces, natural vegetation, crops, etc.) at regional scales (Borak 
et al., 2000). However, for the classes whose 'objects' (fields, 
water areas, roads…) size is smaller than the pixel size, direct 
characterization is not possible. Then, to be able to use the mixed 
pixel measurements, the random linear model is introduced: 
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 is the measurement vector attached to pixel s, s ∈ Ω, the CR 
image — it is of dimension d, and its component terms may 
correspond to different spectral signals observed at different 
dates included in an 'elementary' time-period Ti (change 
detection is performed between different Ti periods); the 
upperscript t denoting the transpose of vector or matrix; 
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 is the vector of class proportions attached to pixel s — it is 
of dimension c, the number of classes present in the region, and 
its component terms αs(k) are the proportions of the different 
classes in pixel s, that satisfy: 

 
[ ] ( )

( )   1

10   ,,1
  ,

1







=

≤≤∈∀
Ω∈∀ ∑

=

c

k
s

s

k

kck
s α

α
 (2) 

During Ti time period, the sα
r

 are assumed to be constant; 
- y is the matrix of dimensions c×d, whose c lines are the 

transposed of the feature vectors ky
r

, k ∈ [1,c], characterizing 

the class k during Ti ( ky
r

 is of dimension d); 
- sε

r
, of dimension d, represents the errors. 

Assuming that the class features are stationary within a N pixel 
region, the generalization of (1) to the whole region is: 

 ttt eyX += .α  (3) 

where X,  α , and ε are matrices of respective dimensions d×N,  
c×N, and d×N. From (2), α  is stochastic. From (3), three problems 
can be considered knowing X: 
1. Knowing the CR pixel composition α , y has to be estimated. 

This problem is called the 'disaggregation problem'. Its main 
applications are surface monitoring (Faivre and Fisher, 1997) 
or physical model forecasting using data assimilation (Faivre 
et al., 2000). It can be solved independently for each 
dimension j ∈ [1,d], searching for the solution that minimizes: 
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2. Knowing the class time-features y, α  has to be estimated. This 
problem corresponds to the supervised classification of a CR 
image. Its main application is land cover prediction using 
remote sensing data (Cardot et al., 2003). It can be solved 
independently for each pixel s ∈ [1,N], searching for the (2) 
constrained solution that minimizes: 
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3. Neither α  nor y is known, thus both have to be estimated. This 
problem corresponds to the unsupervised classification of a 
CR image. It is much more complex than the two former ones. 



If we know how to solve easily the just mentioned problem 3, the 
problem of change detection at CR scale could be addressed 
simply by performing unsupervised classifications at the different 
periods Ti to be compared and by analyzing the classification 
result differences. However, besides the fact that such an approach 
will be rather heavy, some problems are likely to occur due to 
differences in the classes obtained at the different periods. In this 
study, we propose to address the problem of change detection at Ti 
using the Ti-1 classification information, based on the same idea 
than the EM (Dempster et al., 1977) or ICE (Pieczynski, 1992) 
approaches: in presence of an hidden variable in addition to the 
unknown one, alternate between the estimation of the hidden 
variable (or its distribution in classical EM) and the unknown one. 

Classically, a (sub-)region where the restriction of the α matrix is 
known is used to estimate the class feature matrix y from the 
Problem 1 (among the three problems mentioned just before) 
solution. Then, assuming it is stationary, y is used to estimate the 
restriction of the α  matrix to the regions where it is unknown. In 
this study, we relax the assumption of the a priori knowledge of a 
(sub-)region ω where α  is known. Therefore, the first step is now 
to determine automatically the two subsets of pixels candidate to 
be unchanged, ω, and of pixels candidate to be changed, Ω−ω. 
This step provides the 'change detection first guess' and its result, 
ω, is used to estimate y. The second step aims at providing a new 
estimation of the class repartition within CR pixels. It is compared 
to the previous repartition to derive the 'change detection a 
posteriori estimation'. To be successful, the use of this approach 
must be restricted to the case where the changes are minority. 
Section II details the proposed approach and its two steps: change 
detection, and change estimation. Section III first validates the 
method in the case of simulated data. Then, the results obtained 
using SPOT/VGT and NOAA/AVHRR actual data to monitor the 
land cover over the Val de Saône watershed (France) are 
presented. Section IV gathers our conclusions. 

2 CHANGE DETECTION AND ESTIMATION 

Here, it is assumed that image preprocessing, and in particular co-
registration, is done correctly (the difficulties of misregistration 
modeling make impractical any other assumption). 
The relative normalization of the d components of sX

r
 is also 

considered as a preprocessing step. Indeed, the use of Euclidian 
norm throughout the entire study implicitly assumes an equal 
noise power (or variance) for the d dimensions. 

2.1 Determination of a subset of pixels without change, and 
class feature learning 

The problem considered here is similar to Problem 1, except that 
we do not know on which sub-part of the image, or pixel subset ω, 
our prior knowledge of land cover is valid. In other words, 
defining the equation system (3) from all the CR image pixels, 
some equations are erroneous due to the occurred changes in some 
CR pixels s, that make prior sα

r
 values invalid. Such equations 

have to be removed from (3). The proposed method estimates 
simultaneously the pixel subset ω, i.e. the set of the pixels 
candidate to present no change in their composition ( sα

r
 values), 

and the class features. The label changed or unchanged (i.e. 
belonging to ω or to Ω-ω) is the hidden field, and the class 
features y are the unknown variables. According to the mean 

square error minimization criterion, y is estimated from the 
restriction of (3) to ω as: 

 [ ] [ ]
[ ]

( ) ( ) ( )



























×−=∈∀ ∑ ∑

∈ =ω
α

s

c

k
kssj jykjXdj

j

2

1
minarg~    ,,1

y
y  (6) 

For ω estimation, we consider a threshold on the pixel compo-
sition difference between initial value and new estimation. It can 
be shown that such it is much more robust than the more intuitive 
threshold on the quadratic error (Le Hégarat-Mascle et al., 2005). 
y and ω are derived simultaneously using an iterative alternate 
estimation. Two steps are carried on at each iteration: (i) y  
estimation from the knowledge of the restriction of α  to ω  
from (6), (ii) ω pixel composition re-estimation knowing y from: 
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(7) minimization is both subject to bounds on the variables and 
linearly constrained. Optimization is based on a two-phase 
quadratic programming method (Gill et al., 1984). Before re-
iteration, ω is updated by removing the pixels exhibiting a ∆α 
value greater than the current threshold (in our case empirically 
decreasing geometrically from 0.5 to 0.05). 

At the end of this algorithm step, two issues have been derived: an 
estimate of y, and a subset of CR pixels associated with changes: 
ωch = Ω-ω. Assuming that all changes are land cover changes, a 
new estimate of α  for all these pixels can be attempted. 

2.2 Re-estimation of the composition of the pixels not included 
in the previous subset, and specification of the changes 

The problem considered here is similar to Problem 2 described in 
the Introduction. We assume that, from the previous step, all the 
CR pixels with changes are included in ωch. In fact, ωch is likely to 
contain also unchanged composition pixels, but exhibiting a high 
noise level. The resolution of (7) leads to mathematically optimal 
solutions – in terms of quadratic error, without considering the 
'physical' meaning of the solutions. Now, in some cases, the 
secondary minima may be more realistic for the physical 
application. Therefore, we propose that the solution also be as 
close as possible to the initial land cover map. It is justified since: 
- first, some CR pixels are re-estimated even though they have 

not changed (ωch contains also unchanged pixels exhibiting a 
high noise level); 

- secondly, in the case of the CR pixels presenting some actual 
changes, for a given pixel, the changes are likely to concern a 
limited number of classes (and then αs(k) terms), e.g. the 
redeployment of grassland to crops impacts only two classes. 

Mathematically, the new function to minimize is: 
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where, in addition to previous notation definition, )0(
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 is the prior 

value of sα
r

, and γ is a weighting parameter, γ ∈ ℜ+. It monitors 



the relative importance of the 'reminder' or 'memory' term: For 
γ = 0, the minimization is performed only considering the 'data 

attachment' term 
2

. ss
t X

rr
−αy , conversely to the γ = +∞ case 

where the obtained solution is the previous composition map 
independently of the 'data attachment' term. In our case, γ is 
determined empirically, and the fact that the best results are 
obtained for a non-null value of γ will state (section III) the 
relevance of the proposed 'reminder' or 'memory' term. For 
computational aspects, we note that (8) can also be written: 
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where Idc is the identity matrix of dimension c, and the newly 
involved vector and matrix are obtained by line concatenation 
operation of previously defined vectors and matrices. The 
minimization is achieved using the same procedure as for (7). 

3 RESULTS 

3.1 Case of simulated images 

To validate our approach in a case where all parameters are 
known, we consider simulated data. Eight classes have been 
simulated, whose temporal signal features correspond to different 
land types: water, bare soil, vegetation (forest, grassland, crops). 
Some changes have occurred in the initial land cover map. 
According to the new label map and the class features, high 
resolution (HR) data have been simulated under the assumption of 
white noise and Gaussian laws representing the class conditional 
probabilities. CR data are obtained by simple average of the 
values of the 50×50 HR pixels included in each CR pixel.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1.  ∆αs global statistics (mean, median, 1st and 3rd quartiles) 

estimated over ωch, for the resolution ratio 50×50. 

The y matrix is estimated using the proposed algorithm. 
Convergence is achieved for 5 iterations. The error on class 
feature estimation remains less than 0.1 for class feature values 
ranging from 0 to 1. Fig. 1 shows the αs error statistics: mean, 
median, and 1st and 3rd quartiles estimated over the set ωch, versus 
the parameter γ. Restriction to ωch allows to focus on the detected 
changes and the pixel composition re-estimation. The value at the 
abscissa labelled 'infinite' corresponds to the case where no 
change detection was performed. Fig. 1 states the interest of the 
'reminder' or 'memory' term (γ ≠ 0). In the absence of this term, the 
composition error mean value is almost equal to 18% (median 

value almost 11%). Best result is then obtained for γ = 0.1: 
composition error mean value lower than 8% (median value lower 
than 3%). Looking at the distributions of the α  errors versus the 
CR pixel change rate, obtained in different cases of γ value, we 
can check that the highest are the change rate values, the lowest 
should be γ. In our case, γ ≠ 0 improves the results until change 
rate values around 30% are reached. 

3.2 Land use monitoring in an agricultural watershed 

The data under consideration in this section were acquired over 
the Val de Saône (France) which is the downstream region of the 
Saône watershed. Over this region a database gathering coarse 
resolution images from two satellite sensors are available. First 
data series have been acquired by the NOAA/AVHRR (Advanced 
Very High Resolution Radiometer) sensor. The considered daily 
data are geo-referenced in Lambert II with pixel size equal to 
1 km×1 km. Among the available channels, the Red, the NIR, and 
the MIR Top Of Atmosphere reflectances were selected. Two 
other data series have been acquired by the VGT sensor: S10 
series and P series (only produced by the VITO center, 
http://www.vgt.vito.be). The P series contains daily data 
corresponding to the 'Physical' measurements (reflectance values). 
The S10 product is a mosaic image corresponding to the highest 
radiometric value measured within ten days (three 10-day period 
per month) for each pixel. The VGT sensor has four spectral 
channels: the Blue, the Red, the NIR, and the MIR. For VGT 
series, the projection is Lambert Northern Europe, with a pixel 
size equal to 1×1 km2. For each series, the considered images have 
been selected according to a clear sky criterion, and an angle 
constraint criterion in the case of the S10 series. For the VGT-P 
series, the available clear sky images were sufficiently numerous 
in 2000. In the case of the other series, data acquisitions taken in 
1999 or 2001 were added to data in 2000. Besides the considered 
reflectance channels measured by each sensor, vegetation indices, 
such as the GEMI (Global Environment Vegetation Index; Pinty et 
Verstraete, 1992, chosen as a priori little dependent on 
atmospheric effects), have been derived. Indeed, they are very 
useful to distinguish land cover types in an agricultural area, just 
as the cover fraction that was also computed using the empirical 
relationships proposed in (Weiss et al., 2002). 

To update the Corine Land Cover map established in the 1980's, 
the proposed methodology has been applied to each data series, 
and the results were projected in the same Lambert II coordinate 
system for comparison. The results are consistent. In particular, 
those obtained using the NOAA/AVHRR data are very close to 
those obtained with the SPOT/VGT-S10 series. Tab. A gives the 
linear fitting parameters between the different estimations of pixel 
composition (in terms of land cover proportions) obtained from 
each data series, e.g. the linear relationship between the urban 
class estimated proportion in AVHRR pixel is -0.00 plus 1.03 
times the urban class estimated proportion in VGT-S10 pixel, with 
a correlation coefficient equal to 0.98. For this couple of data 
series, the linear fitting is very close to unity (slope values ranging 
from 0.94 to 1.07 and offset absolute values lower than 0.04), with 
correlation coefficients ranging from 0.91 to 0.98. A part of the 
observed noise is due to the re-projection, which does not take 
into account the class location within CR pixels. Fig. 2 shows the 
VGT-AVHRR pixel proportion estimate versus the VGT-S10 one, 
for the two main land cover types on the watershed: forest and 
crop fields (respectively ≈ 12% and 58% in Corine Land Cover 
1980's map). For the other CR result  couples, similar results have 
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been obtained: Tab. A gives the linear relationships class by class. 
 

 AVHRR vs 
VGT-S10 

AVHRR vs 
VGT-P 

VGT-S10 vs 
VGT-P 

class Y= ρ Y= ρ Y= ρ 
urban -0.00+1.03.X 0.98 -0.02+1.03.X 0.89 -0.02+1.01.X 0.91 
forest 0.00+1.04.X 0.97 -0.00+1.03.X 0.91 -0.00+0.99.X 0.94 
water 0.00+1.07.X 0.92 0.00+0.94.X 0.72 -0.00+0.78.X 0.70 
crop -0.01+0.95.X 0.91 0.03+0.98.X 0.86 0.07+0.97.X 0.89 

grassland 0.04+0.94.X 0.91 0.02+0.91.X 0.87 -0.00+0.91.X 0.90 
vineyard -0.00+1.02.X 0.98 -0.00+1.00.X 0.95 -0.00+0.98.X 0.97 

 
Table A.  For each land cover type, linear regression and 

correlation coefficient between a couple of estimations of the CR 
pixel proportion derived from NOAA/AVHRR, SPOT/VGT-S10, 

or SPOT/VGT-P. 
 

 
 

Figure 2.  Val de Saône results: AVHRR pixel proportion 
estimates versus VGT-S10 ones, for forest and crop areas. 

From the thematic point of view, the main results are the 
following: urban areas: increase of some cities already existing; 
forest: slight decrease of the small forested areas still present in 
1980's in the agricultural part of the watershed; water: increase of 
the number of aquaculture ponds, and decrease of the Saône river 
extent in the Northern part of the watershed; crop fields: important 
increase (about 11.3% at watershed scale); grassland: important 
decrease (replaced by crop fields) except at the borders of the 
river; vineyards: no noticeable change. These changes are 
consistent with the a priori knowledge of the watershed. The 
detection of these changes have then to be exploited in some 
future studies on the impact of the land cover change on the 
meteorological processes or hydrological ones. 

4 CONCLUSIONS  

This paper presents a methodology for change detection using 
coarse spatial resolution (CR) time series. It relies on a linear 
mixing model for the CR pixels. The input data are: the CR series, 
the number of classes, and the previous CR pixel composition. In 
terms of change importance, the application domain of the method 
is restricted to minor changes. Besides, from actual results, due to 
the noise in CR pixel re-estimation, the method is not efficient for 
too few changes. Several explanations can be given for the 
presence of this 're-estimation' noise, such as the sensor 
acquisition geometry (even if for the comparison a common 
reference system was used). Future studies will deal with the use 
of medium resolution sensors (≈ 250×250 m2), such as 
MERIS/Envisat or MODIS/Terra. The decrease of the pixel size 
may induce a decrease of the minimum change value detected. 
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