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Abstract – The covariability between the interannual changes 
of Normalized Difference Vegetation Index (NDVI) and 
actual evapotranspiration was examined.  This study 
employed NDVI datasets from the Pathfinder AVHRR Land 
(PAL) data and the Global Inventory Monitoring and 
Modeling Studies (GIMMS) group to reduce the uncertainty 
that may be involved in the NDVI time series.  The analysis 
was carried out for the northern Asia region from 1982 to 
2000.  19-year interannual change in PAL-NDVI and 
GIMMS-NDVI were both compared with interannual change 
in actual ET which was estimated from model-assimilated 
atmospheric data and gridded precipitation data.  For both 
NDVI datasets the annual maximum correlation with ET 
occurs in June, which is near the central period of the 
growing season.  A significant positive correlation between 
NDVI and ET interannual changes was observed over most of 
the vegetated land area in June in PAL and GIMMS-NDVIs.  
These results suggest that the control of interannual change 
in ET is dominated by interannual change in vegetation 
activity.  Based on analyses of temperature, precipitation, and 
NDVI interannual changes, it was found that the study area is 
roughly divided into two regions: the warmth dominant 
northmost region and the wetness dominant southern region.  
These results indicate that the vegetation interannual change 
and the resultant ET interannual change are controlled by 
warmth and wetness in these two regions, respectively. 
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1. INTRODUCTION 
 
Vegetation over an extensive area influences actual 
evapotranspiration (ET) from the land to the atmosphere mainly 
through transpiration activity.  The authors' previous study, 
Suzuki and Masuda (2004), found an interannual covariability 
between ET and the Normalized Difference Vegetation Index 
(NDVI), a remotely-sensed measure of vegetation greenness, 
over a continental-scale land surface.  This result suggested that 
vegetation is a major factor controlling interannual variation in 
ET, and therefore vegetation change must be considered to 
predict future changes in ET and climate.  In this prior study, 
NDVI data from the Pathfinder AVHRR Land (PAL) dataset 
were analyzed.  However, studies of NDVI interannual change 
are subject to uncertainty, because NDVI data often contain 
errors associated with sensor- and atmosphere-related effects.  
This study aimed to reduce this uncertainty by employing a 
second major NDVI dataset, from the Global Inventory 
Monitoring and Modeling Studies (GIMMS) group, in addition to 
PAL.  GIMMS-NDVI data were produced with a calibration 
method that differs from the one employed for PAL-NDVI data.  
An intercomparison of the PAL-NDVI and GIMMS-NDVI 
datasets provide an effective basis for further analysis of the 
covariability of NDVI and ET interannual changes.  Furthermore, 

this study made an attempt to elucidate the cause of the 
interannual changes in NDVI and ET in relation to temperature 
and precipitation interannual changes. 
 

2. DATA AND METHOD 
 
The NDVI is defined as NDVI = (Ch2 – Ch1)/(Ch2 + Ch1), 
where Ch1 and Ch2 are measurements from Advanced Very 
High Resolution Radiometer (AVHRR) channels 1 (visible) and 
2 (near-infrared) of NOAA satellite, respectively.  Analyses were 
conducted on the monthly basis from 1982 to 2000 over northern 
Asia (30oE – 150oE, 30oN – 75oN). 
 
2.1 PAL NDVI 
The NDVI value from 10-daily PAL dataset (1 x 1-degree spatial 
resolution) was examined.  The monthly value was composited 
by choosing the highest NDVI among three 10-day datasets for 
each month.  This process effectively removed cloud-
contaminated observations.  The 1 x 1-degree value was 
resampled into 2.5 x 2.5-degree grid system to link with the ET 
grid system. 
 
The PAL data are adjusted for errors caused by non-vegetative 
factors such as satellite orbit drift, sensor degradation, and ozone 
concentration and represent interannual variation in vegetation 
well.  Atmospheric Rayleigh scattering and ozone absorption 
were corrected.  Scan angle criteria is within +/- 42 degrees of 
nadir.  The influence due to sensor degradation and orbital drift 
were adjusted according to the empirical formula (Rao and Chen, 
1995, 1996).  Intercalibration with NOAA-9 and other NOAA 
was also conducted. 
 
2.2 GIMMS NDVI 
The NDVI value from 15-daily GIMMS dataset (8 x 8 km spatial 
resolution) (Pinzon et al., 2004; Pinzon, 2002; Tucker et al., 
2005) was compared with PAL-NDVI.  First, the original 8 km 
pixel value was resampled into 1 x 1-degree grid system.  Then, 
monthly data were composited by choosing the higher NDVI 
between two 15-daily datasets for each month.  The 1 x 1-degree 
value was resampled into 2.5 x 2.5-degree grid system as well as 
PAL-NDVI. 
 
The GIMMS data are also adjusted for non-vegetative factors and 
represent interannual variation in vegetation well.  The effects by 
stratospheric aerosol due to El Chichon and Mt. Pinatubo 
volcanic eruptions were adjusted.  No correction for stratospheric 
ozone, Rayleigh scattering, and water vapor was considered.  
Cloud was screened according to 273oK of the brightness 
temperature of Ch5.  Scan angle criteria is within +/- 40 degrees 
of nadir.  Calibration for sensor degradation was executed based 
on an algorithm different from PAL (Vermote and Kaufman, 
1995; Los, 1998), and the desert correction.  For the calibration 
of the orbital drift, Pinzon's (Pinzon, 2002) scheme was applied.  



Intercalibration with MODIS and SPOT-4/ VEGETATION was 
also conducted. 
 
2.3 Evapotranspiration 
ET from the land surface can be estimated from the atmospheric 
water budget (Peixoto and Oort, 1992). ET from the bottom (i.e., 
land surface) of an air column, which vertically extends from the 
ground surface to the top of the atmosphere, can be expressed by 
the following atmospheric water budget equation: 

where t is the time, P is the precipitation at the bottom, W is the 
precipitable water in the air column, and  is the horizontal 
flux divergence of water vapor integrated from the surface to the 
top of the atmosphere (so called aerial runoff).  
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This study assumed air columns above the 2.5 x 2.5-degree grid 
cells and computed each term for each grid cell.  The CPC 
Merged Analysis of Precipitation (CMAP) dataset was used to 
determine monthly precipitation P (Xie and Arkin, 1997).  The 
terms  and ∂W/∂t are computed from specific humidity 
and wind values.  In the present study, these meteorological 
values were obtained from gridded 6-hourly atmospheric data 
(NCEP Reanalysis-2) provided by the National Centers for 
Environmental Prediction (NCEP) (Kanamitsu et al., 2002). 
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Monthly  from 1982 to 2000 for each grid cell (192 x 94) 
of the reanalysis model was estimated by integrating the flux 
divergence from the ground to 0 hPa (all 28 layers of the model).  
The estimated values were interpolated onto the same 2.5 x 2.5-
degree grid as the CMAP data.  The monthly ∂W/∂t was 
calculated from the precipitable water difference between the 
beginning and end of each month. 
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2.4 Temperature 
Additionally, gridded surface temperature data were obtained 
from the CRU TS 2.0 dataset, which is comprised of monthly 
grids of observed climate data.  The dataset spans the period from 
1901 to 2000 and covers the global land surface at 0.5-degree 
resolution 
 (http://www.cru.uea.ac.uk/~timm/grid/CRU_TS_2_0.html).  
 
Some dataset values were not suitable for long-term variation 
analysis, because interpolation and substitution of values 
occurred frequently in regions with sparse station networks, 
especially in the early years of the period.  However, we regarded 
the temperature time series over northern Asia from 1982 to 2000 
as representative for interannual temperature variation analysis, 

since northern Asia had a sufficiently dense surface station 
network during that period. 
 

3.  RESULT AND DISCUSSION 
 
3.1. Comparison of Temporal Variation 
Fig. 1 demonstrates the time series of mean PAL-NDVI, 
GIMMS-NDVI and their difference from 1990 to 2000 averaged 
over the study region.  These variations are similar.  Both NDVIs 
indicate striking seasonal change, that is, small value in winter 
and high value in summer, reflecting the vegetation phenology in 
the region.  However GIMMS-NDVI indicates higher value than 
that of PAL-NDVI throughout the year as known from the 
negative difference (PAL – GIMMS) value in Fig. 1.  Their 
difference tends to be small in autumn which is related to the 
larger PAL-NDVI than GIMMS-NDVI in October over boreal 
forest zone. 
 
3.2. Interannual Changes of NDVIs and ET 
Fig. 2 shows the correlation coefficients between 19-year 
interannual changes of PAL-NDVI and ET anomalies, and 
GIMMS-NDVI and ET anomalies for each month averaged over 
three representative regions (see the caption of Fig. 2 for three 
regions).  Annually, the highest correlation was found in June in 
all three regions in both cases of PAL and GIMMS.  For example, 
western Siberia has the highest coefficient (0.73) for PAL-NDVI 
in June, while the highest coefficient of GIMMS-NDVI is found 
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Fig. 2 Monthly Correlation coefficients of the PAL-NDVI
 ET (a), GIMMS-NDVI and ET (b) interannual chang

from 1982 to 2000 for the three study regions; Western 
beria (50oE – 90oE, 55oN – 65oN), Eastern Siberia (80oE 

– 130oE, 65oN – 70oN), and Kazakh (50oE – 60oE, 45oN – 
55oN).  The gray area denotes values below the 99% 

significance level. 
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Fig. 1.  Mean temporal change of PAL-NDVI (yellow), GIMMS-NDVI (blue), and their difference (PAL – 
GIMMS) (light blue) from 1990 to 2000 (30oE – 150oE, 30oN – 75oN). 
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in Eastern Siberia (0.71) in June.  Since June is the most active 
season of vegetation, the highest correlation between NDVIs and 
ET is attributed to the greatest contribution of the vegetation 
transpiration to total ET in June.  The fact that the highest 
coefficient occurs in June in both cases of PAL-NDVI and 
GIMMS-NDVI surely delineates the close interannual 
relationship between vegetation and ET. 
 
19-year interannual changes (monthly anomalies) in the PAL-
NDVI, GIMMS-NDVI, and ET in June, the month with the 
highest coefficient, over the three regions were indicated in Fig. 3.  
Very similar interannual changes among three parameters can be 
seen in each region.  This result indicates that both PAL-NDVI 
and GIMMS-NDVI display interannual variation that is similar to 
ET for active growing season months. 
 
3.3. NDVI Correlation to Temperature and Precipitation 

Interannual Changes 
To investigate the cause of NDVI and ET interannual changes, 
the interannual correlation coefficient between temperature (from 
CRU TS2.0 dataset) and NDVI, and precipitation (from CMAP 
dataset) and NDVI was calculated.  Fig. 4 demonstrates those 
relationships for PAL-NDVI and GIMMS-NDVI in June, when 
the correlation between NDVI and ET is the strongest in the year.  
Each plotted point in Fig. 4 corresponds to those correlation 
values in each 2.5 x 2.5 degree grid cell over the study region.   
 
In both cases, most of points are plotted in the lower-right, upper-
right, and upper-left quadrants of the coordinate system, and few 
points in lower-left quadrant.  The points plotted in the lower-
right quadrant indicate that the NDVI interannual change is 
positively dominated by temperature and negatively by 
precipitation, suggesting the vegetation interannual change is 
dominated by warmth interannual change.  On the other hand, 
those in the upper-left quadrant indicate that the NDVI 
interannual change is positively dominated by precipitation and 
negatively by temperature, suggesting that the vegetation 
interannual change is dominated by wetness interannual change.  
Those in upper-right quadrant mean that both temperature and 
precipitation positively control the NDVI interannual change, 

suggesting the vegetation is positively dominated by both warmth 
and wetness interannual changes.  In all the quadrants, most of 
the correlation coefficient between NDVI and ET shows positive 
value, delineating that NDVI positively influence ET interannual 
change in any cases.   
 
Fig. 5 illustrates the geographical distribution of correlation 
coefficients between temperature and NDVI interannual changes, 
and between precipitation and NDVI interannual changes in June 
for PAL-NDVI and GIMMS-NDVI.  In both PAL-NDVI and 
GIMMS-NDVI panels, red color (positive temperature-NDVI 
and negative precipitation-NDVI correlations) distributes over 
the northern area, while blue color (negative temperature-NDVI 
and positive precipitation-NDVI correlations) distributes over the 
southern part.  The green color (positive temperature-NDVI and 
positive precipitation-NDVI correlations) can be seen at the 
boundary between red and blue color areas which are roughly 
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Fig. 4. The relationship between correlation 
coefficients: temperature and NDVI, and precipitation
and NDVI interannual changes for PAL-NDVI (a) and 
GIMMS-NDVI (b) in June. The correlation coefficient 

between NDVI and ET was denoted by color scale.

Fig. 3. Interannual variation of the PAL-NDVI (yellow), 
GIMMS-NDVI (blue) and ET (red) anomalies averaged in 
June in the three selected regions. (see the caption of Fig. 2 

for the longitude and latitude for these three regions). 



positioned along 55oN latitude. 
 
Figs. 4 and 5 suggest that the vegetation interannual change is 
induced by warmth interannual change in northern part, while by 
wetness interannual change in southern part.  Subsequently, such 
vegetation interannual change positively induces the ET 
interannual change over the area. 
 

4. CONCLUSION 
 
PAL-NDVI and GIMMS-NDVI were both compared with 
interannual change in ET, which was estimated by model-
assimilated atmospheric data and precipitation data.  Although 
the correlation coefficient between GIMMS-NDVI and ET is 
slightly less than for PAL-NDVI and ET, for both NDVI datasets 
the annual maximum correlation with ET occurs in June, which is 
near the central period of the growing season.  A positive 
correlation between GIMMS-NDVI and ET was observed over 
most of the vegetated land area in June, and a similar result was 
obtained with PAL-NDVI.  The regionality of the interannual 
correlation between temperature and NDVI, and precipitation and 
NDVI suggest that the NDVI interannual change, and ET 
interannual change, which includes the influence of vegetation 
interannual change, is induced by warmth interannual change in 
the northern area, and by wetness interannual change in the 
southern part. 
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Fig. 5 distribution of the combination of correlation 
coefficients: temperature and NDVI interannual changes, 
and precipitation and NDVI interannual changes for PAL-

NDVI (a) and GIMMS-NDVI (b) in June.  Gray area 
denotes the NDVI is too small for the calculation of the 

coefficient. 
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