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Abstract – The universal pattern decomposition method 
(UPDM) has been successfully applied to simulated data for 
Landsat/ETM+, Terra/MODIS, ADEOS-II/GLI and others 
using ground-measured data. The UPDM is tailored to   
decrease dimensions of hyper multi-spectral data that have 
sensor-independent characteristics and thus exploit hyper 
multi-spectral remotely sensed data classification.  In this 
study, we classified Landsat/ETM+ data via a transformation 
of the original reflectance spectral space to the UPDM sub-
space. Classification accuracy was compared using results 
from UPDM and the primary component transformation 
(PCT). Classification results for ETM+ data were also 
compared using several traditional classifiers. The UPDM 
and the PCT showed similar classification accuracy. The 
UPDM sub-space has definitive physical meanings. 
Classification results using UPDM are sensor-independent, 
which are very significant for comparison of results derived 
from different data. 
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1. INTRODUCTION 
 

Remotely sensed data supply a wealth of information to help 
monitoring changes in land cover. One approach to extract land-
cover information from remotely sensed images is classification 
(Huang, et al. 2002), and various classification techniques using 
multi-hyper spectral data have been developed. These techniques 
including minimum distance classifier (MDC), maximum 
likelihood classifier (MLC), neural network classifier (NNC), and 
decision tree classifier (DTC). Classification accuracy is affected 
by training sample size and number of input variables (Huang, et 
al. 2002). As dataset dimensions increase, sufficient training 
sample data must be selected to yield reliable classification 
parameters. Feature extraction project data from the original 
feature space to a lower-dimensional subspace that has a more 
effective feature space (Hsu, et al., 1999). Principal components 
transformation (PCT) is a useful feature extraction method; 
however, components of the PCT have no physical meanings. 
The universal pattern decomposition method (UPDM) is a 
sensor-independent method that is tailored for satellite data 
analysis (Zhang, et al. 2003, 2005). Sets of spectral reflectance 
measured by a sensor are transformed by the UPDM into three 
coefficients with three fixed spectral reflectance patterns. The 
spectral reflectance patterns are determined for a spectral region 
between 350 nm and 2500 nm and are called the “universal 
standard spectral patterns.” Sensor wavelength values are 
selected from the universal standard spectral patterns to analyze 

the spectral region of each sensor. The coefficients are “pattern 
decomposition coefficients.” 
Application of the UPDM to satellite reflectance datareduces the 
number of UPDM features from the original hyper-multi 
dimensional data. In contrast to PCT, UPDM components have 
definitive physical meaning. In the standard pattern, they are 
water, vegetation and soil. The classification operation performed 
using UPDM coefficients yields many benefits. 
This paper reports on the application of UPDM to ETM+ data 
classification. Results are compared to classification accuracy 
from PCT using MDC (using minimum Euclidean distance and 
minimum Mahalanobis distance) and MLC algorithms. 
 

2. METHODOLOGY 
 
Fujiwara et al. developed a pattern decomposition method (PDM) 
for satellite data analysis (Fujiwara, et al., 1996), Muramatsu et 
al. studied the PDM for Landsat/MSS, TM data analysis 
(Muramatsu, et al., 2000), Daigo et al. applied the PDM for 
hyper-multi spectral data analysis (Daigo, et al., 2004), The 
UPDM decomposes reflectance values at each pixel into a linear 
sum of standard spectral patterns for water, vegetation, soil and 
any supplemental patterns using the following formula (Zhang, et 
al., 2003; 2005):   
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where  Ri is the reflectance of band i measured on the ground 
(or by satellite sensor) 

 Cw, Cv and Cs are the respective decomposition 
coefficients 

 Piw, Piv, and Pis are the standard spectral patterns of 
water, vegetation and soil normalized with respect to 
the properties of each sensor 

 
The three standard spectral patterns as a continuous spectral 
function from 350 to 2500 nm are defined as follows (Zhang, et 
al., 2003; 2005): 
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where ∫ λd  refers to integration of the total wavelength range, 

and the )(λkP  of the standard spectral pattern is defined as 
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where )(λkR  represents the spectral reflectance patterns of 
standard water, vegetation and soil. The shapes and magnitudes 
of the standard patterns )(λkP  are fixed for all sensors. 
For each sensor band, we intercepted ikP values. Thus, the 
standard patterns for each sensor are defined by 
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where is and ie  are the start and end wavelengths for band i, 

respectively, and ∫
i

i

e

s
dλ  is the wavelength width of band i. The 

decomposition coefficients Ck were obtained for each sensor by 
the least squares method using equation (1). In principle, nearly 
equal values should result for the same object; furthermore, 
coefficient precision is expected to improve as the number of 
bands increases. 
Spectral reconstruction precision was evaluated using reduced 
Chi-square values that satisfied the expression (Zhang, et al., 
2003; 2005) 
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Here, n is the number of bands, and r is the error of band i.  
 

3. DATA PROCESSING 
 
3.1 Data preprocessing  
We used Landsat/ETM+ standard product data acquired over the 
Yangtze River in China on 24 December 1999 by the Beijing 
Remote Sensing Ground Station. Data were geo-referenced and 
had a spatial resolution of 28.5 m. Six spectral bands (bands 1–5, 
and 7) in the ETM image were converted to top-of-atmosphere  
reflectance using the common method of Joachim et al. (1991).  
 

 
 

Figure 1. Flowchart of data processing 
 

Only the Rayleigh scattering was corrected because the image 
was clear over the research area. Fig. 1 schematically shows the 
data processing method. Table 1 shows the Rayleigh scattering 
values for ETM+ data used in this study.  

 
Table 1 Rayleigh scattering correction values for ETM+ 

Band 
 

Wavelength 
nm 

E0 
W/m2/µm/sr 

Rayleigh 
scattering 

1 450.0~515.0 1969.0 0.055 

2 525.0~605.0 1840.0 0.031 

3 630.0~690.0 1551.0 0.017 

4 775.0~900.0 1044.0 0.007 

5 1550.0~1750.0 225.7 0.000 

7 2090.0~2350.0 82.1 0.000 

 
3.2 Feature extraction 
A subspace projection was performed on the original reflectance 
multi-spectral space after ETM+ data were converted to 
reflectance data. A new UPDM feature was thus obtained using 
Eq. (1). Three normalized standard spectral patterns of water, 
vegetation, and soil in the 350nm-2500nm wavelength (excluding 
the vapor absorption wave portion) were computed. The 
intercepted standard spectral pattern for ETM+ sensor was 
(Zhang, et al. 2005): 
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New UPDM coefficients (three UPDM features) can be 
computed using the least squared method on Eq. (1).  

 
4. RESULTS AND DISCUSSION 

 
4.1 Classification using PCT and UPDM components 
The comparison of the classification efficiency and accuracy 
considers data derived from three PCT components and three  
 

 
 

Figure 2. ETM+ reflectance image expressed by bands 6, 4, 1 in 
red, green, and blue  
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Figure 3. Classification results from different classifiers. Top row, (a) and (b): Minimum distance classifier; Middle row, (c) and (d):  
minimum Mahalanobis distance classifier; Bottom row, (e) and (f): maximum likelihood classifier. Results from three PCA  

components (left column) and from three UPDM components(right column). 
 



UPDM components. Data arise from the same classifier, namely 
the minimum distance classifier, minimum Mahalanobis distance 
classifier, and maximum likelihood classifier. Fig. 2 shows the 
original reflectance image derived from bands 6, 4, 1(red, green, 
and blue, respectively). Fig. 3 shows results from three 
conventional classifiers using PCA and UPDM components. 
Classification accuracy from the maximum likelihood classifier is 
higher than the other two classifiers in this example. 
 
4.2  Classification accuracy comparison 
We used two measures of accuracy: overall accuracy and the 
kappa coefficients. As noted above, the maximum likelihood 
classifier was more accurate than the others in this study, which 
used only three components to define the classification. Reliable 
parameter can therefore be estimated from the training samples. 
We considered seven classes training sample data and 584 test 
sample data in the original reflectance imageusing the method 
discussed by Murat (2002). Table 2 compares classification 
accuracy. Results show that UPDM is suitable for feature 
extraction before classification and that UPDM and PCT have 
similar classification accuracy. More importantly, UPDM 
components have definite physical meanings. 
 

Table 2. Classification accuracy 
Data used Overall accuracy Kappa coefficients

Original reflectance 88.9% 0.87 
PCT components 89.2% 0.87 

UPDM components 88.5% 0.86 
 
 

5. CONCLUSIONS 
 
This paper considered ETM+ data for a classification study. The 
satellite digital signal number (DN) was first converted to 
reflectance value after adjusting for the influence of Rayleigh 
scattering. Subsequently, a PCT and UPDM transformation were 
performed. The classification used PCT and UPDM were similar. 
Unlike PCT components, UPDM components have physical 
meanings. Classification results using UPDM are sensor-
independent (Zhang, et al. 2005), which are very significant for 
comparison of results derived from different data. 
Previous studies using simulated ground-measured data have 
demonstrated the suitability of UPDM for hyper spectral data. 
Further research will use hyper spectral data, for example, 224-
bands AVIRIS data. 
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