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Abstract

This paper describes an alternative to numerically integrate the differential equations of a strapdown inertial
navigation system (INS). The use of predictor-corrector multistep methods with variable step-size is discussed
and a fourth-order method of the said type is derived.

The paper starts with a brief review of the most popular numerical methods used in the solution of the first
order differential equations of motion of strapdown inertial navigation systems. Then some of their limitations
in practical applications are discussed; namely that they are not well suited to the realities of INS and Global
Navigation Satellite Systems (GNSS) data streams with data gaps, unsynchronized sensors and deviations from
nominal sampling frequencies. Under this circumstances, traditional fixed step-size algorithms lead to either
low order methods or cumbersome algorithmic patches.

In the central part of the paper it is shown how variable step-size multistep methods inherit all the advantages
of single and multistep methods while avoiding most —if not all— of their pitfalls. Last, a detailed derivation
of a fourth-order predictor-corrector multistep methods with variable step-size is given.

1 Introduction

The solution of the differential equation model governing the dynamics of a strapdown inertial navigation
system cannot be described by analytical and closed formulae; hence, it has to be solved by means of numerical
algorithms. To the best knowledge of the authors, the classical approaches for the numerical integration of such
models are the transition matrix, fourth-order Runge-Kutta (RK4) or the combined use of one-step first-order
Euler method and RK4. [A numerical method is called nth order if its error term is O(hn+1).] The transition
matrix has the main drawback that it significantly increases the computational burden if a reasonable precision
for the solution is required. Euler method has the advantage that it does not depend on the integration step
(the significance of this fact will be perceived later) but, on the other hand, it is of poor accuracy. RK4,
however, is accurate enough but it is based on evaluations of the field that defines the differential equation.
This circumstance introduces an extra difficulty due to the fact that an inertial observation is needed every
time the field defining the strapdown INS model has to be evaluated. The classical RK4 method is defined with
a fixed step-size, therefore the time interval between two consecutive inertial observations must be constant.
Unfortunately, although theoretically there is a nominal frequency at which the Inertial Measurement Unit
(IMU) outputs inertial observations, in practice the inertial measurements slightly depart from this nominal
value. This can be overcame, for example, by interpolating the inertial observations at the nominal frequency.
However, manipulation of the inertial observations is not optimal from a numerical point of view and it is
an option to be avoided if possible. An alternative to the inertial data interpolation is the use of the Euler
method. When the difference between the nominal frequency and the time span between two consecutive inertial
measurements is above certain threshold, the integration step can be set as the time difference between such
measurements and then, an Euler step performed. This avoids the need of interpolating, but introduces a loss
of precision in the navigation solution due to the use of a first-order method.

Another interesting scenario is the navigation with INS aided with GNSS observations, a synergy known as
INS/GNSS navigation. The classical approach to INS/GNSS navigation is the Kalman filter. The procedure
basically is the following: the navigation solution is estimated at each epoch by means of integrating the INS
mechanization equations (see section 2) until a GNSS observation is available. Then, by means of a Kalman
filter step, an optimal1 state is estimated. After the filter step, the navigation solution is again estimated by
means of the integration of the INS mechanization equations until the next GNSS observation and so forth. This
algorithm assumes the GNSS observation and the state prediction eventually concur at some epoch; depending
on the quality of the INS/GNSS components and on the acquisition configuration, this coincidence might be
quite rare. This leads to a data manipulation or to algorithm patches such as the described in the previous

1 optimal in the least-square norm sense.



paragraph. It is worth to note that the problems related with the integration step-size do not happen when
using the Euler method alone.

The goal of this paper is to design a numerical method for the integration of ordinary differential equations,
avoiding all the problems exposed above while preserving the good properties of the three methods presented.
In other terms, the goal is to develop a method that does not depend on the integration step-size (as the Euler or
the transition matrix methods do) with a reasonable order of accuracy (such as the fourth-order Runge-Kutta),
considering also the computational aspects. The proposed alternative is a fourth-order predictor-corrector
multistep method with variable step-size. In this paper, the main features of the Euler, RK4 and the transition
matrix methods are presented as well as the problems that arise when they are implemented in an Inertial
Navigation System. After analyzing the performance of these methods, the proposed alternative to overcome
the pitfalls of these approaches is presented.

2 The INS mechanization equations and their integration.

The stochastic differential equation 1 is the mechanization model of an strapdown inertial navigation system in
an ECEF coordinate system.
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In this set of equations, f b and ωb
ib are, respectively, the linear acceleration and the angular rate sensed by

the IMU. xe, ve, Re
b are the position, velocity and the rotation matrix that transforms the coordinates in the

body-frame to the ECEF-frame respectively; wv, wf , wω, wo and wa are white noise generalized processes.
Finally, ob and ab are the biases for the angular rate sensors and the linear accelerometers respectively and
α, β > 0 the inverse of the correlation times. Other errors such as scale factors or misalignments are not
considered for the sake of simplicity. As the objective of this paper is not to disclose about the intricacies of
this model, the reader is referred to [2] for a complete description of the equation 1 and its representation in
different reference frames.

The way to numerically solve this stochastic model is to integrate the associated differential equation, this
is, the ordinary differential equation resulting from taking apart the functional and stochastic components; on
the other hand, the covariance is propagated according to the statistical properties of the noise. For further
information about the numerical integration of stochastic differential equations, the reader is referred to [4].
This paper deals with the numerical integration of the associated ordinary differential equation. As already
mentioned, this differential equation does not allow for an analytical closed formula of the solution, therefore a
numerical algorithm has to be used for its integration. The next subsection explains how (and why) the classical
—rather, the “popular”— methods used for the numerical integration of equation 1 fail in many INS/GNSS
hybrid systems.

2.1 The integration issue

Two considerations have to be taken into account when stating the problem of the numerical integration of
equation 1. The first concerns to the numerical method and the second to the nature of the inertial observations.
The ideal numerical method would be a method of high accuracy, step-size independent and fast. Unfortunately,
usually high accuracy requirements increase the computational burden, making the method slower. Hence, a
compromise between accuracy and velocity is required. For navigation purposes, fourth-order methods are a
good compromise and usually they fulfill the accuracy requirements. A step-size independent method would not
be essential if the field defining the differential equation could be evaluated at whatsoever epoch. For example,
if the field had an analytical expression not depending on external observations, this condition would not be
necessary at all. Unfortunately, this is not the case of the INS mechanization equations. The model described
in equation 1 depends on the inertial measurements —linear accelerations and angular rates— provided by the
IMU. Again, step-size independency would not be required if the frequency at which the IMU provides inertial
measurements would be constant (typically IMUs output inertial measurements between 50Hz and 400Hz, what
is enough for integration purposes). But, as said previously, although there is a nominal frequency, the inertial
observations slightly depart from it; even worse, data gaps might occur. Hence, the method becomes step-size
dependent.

The next subsections present an overview of three popular methods for the numerical integration of ordinary
differential equations: Euler, RK4 and the transition matrix. The Euler method has order one and is step-
size independent and the RK4 is of order four but step-size dependent. The impact of such features in the



integration of the INS mechanization equations has been already mentioned. The transition matrix is step-size
independent and might have arbitrary precision. Nevertheless, it is expensive from a computational point of
view, only holds for linear dynamical systems and assumes that the [time dependent] linear relationship between
states and observations is constant between two consecutive epochs. Moreover, the transition matrix has to be
recalculated each epoch. For the sake of generality, instead of the INS mechanization model, a more general
differential equation model will be considered. The statement of the problem is that of the classical initial value
problem: given a differential equation of the form{

ẋ = f(x,u, t) for t ∈ [t0, tf ]
x(t0) = x0

(2)

where x ∈ Rn is the time dependent state vector, u ∈ Rm the observations’ vector and t the time, the goal is to
numerically compute the solution. From now on, the notation will be the following:

• x̂ stands for the numerical approximation of the solution, while x stands for the real solution,

• x(tk) = xk,

• u(tk) = uk,

• fk = f(xk,uk, tk),

• f̂k = f(x̂k,uk, tk),

• hk = tk+1 − tk.

2.1.1 One-step Euler method

This method requires a low computational burden, it is of easy implementation and is step-size independent
but, alas, is of very poor accuracy (O(h2)) and highly unstable. However, as it will be seen later, this method
might be very useful for some purposes.

Assume that the initial value problem 2 has to be numerically solved. By the formal definition of the
derivative of a function, it holds that

xk+1 − xk

hk
≈ ẋ = f(xk,uk, tk)

Therefore, isolating xk+1 and considering that only approximations of the solution are used, it can be straight-
forwardly seen that

x̂k+1 = x̂k + hkf(x̂k,uk, tk)
Note that in this case, the integration step hk might not be constant. The integration step can be set as the
time span between two consecutive inertial observations and the field can be evaluated. As it will be seen in
the next section, this privileged feature is not shared with the RK4.

2.1.2 Fourth-order Runge-Kutta method

The fourth-order Runge-Kutta is perhaps the most known and widely spread numerical method for integrating
ordinary differential equations. The general form of an explicit Runge-Kutta of arbitrary order r with fixed
integration step h is

x̂k+1 = x̂k + h
∑r

j=1 Ajkj(x̂k, h, tk)
k1(x̂ , h, t) = f(x̂ ,u, t)
kj(x̂ , h, t) = f(x̂ + h

∑j−1
s=1 bjsks(x̂ ,u, t + ajh),u(t + ajh), t + ajh), j = 2, 3, . . . , r

Note that for r = 1, this method reduces to the one-step Euler method explained in the previous section. The
classical fourth-order method is with r = 4. The following schema corresponds to it:

x̂k+1 = x̂k + h
{1

6
k1 +

1
3
k2 +

1
3
k3 +

1
6
k4

}
where

k1 = f(x̂k,u(tk), tk)
k2 = f(x̂k + h(k1/2),u(tk + (h/2)), tk + (h/2))
k3 = f(x̂k + h(k2/2),u(tk + (h/2)), tk + (h/2))
k4 = f(x̂k + hk3,u(tk + h), tk + h)

The interested reader is referred to [1, 3, 5] for further information about other particular features of the family
of Runge-Kutta methods. Note that this method requires four evaluations of the field at different points and
times. Note, as well, that a higher r requires more evaluations, increasing this way the computational burden.
Moreover, fields with no dependencies on external observation or with constant time span between consecutive
observations are required. Non of this conditions are fulfilled in practice by inertial navigation systems in real
conditions.



2.1.3 Transition matrix

As already said, the transition matrix method suits only for linear dynamical systems. However, the differential
equation 2 is not necessary linear. Hence, instead of the differential equation 2, the linear model{

ẋ (t) = A(t)x(t) + B(t)u(t) for t ∈ [t0, tf ]
x(t0) = x0

will be considered. Note that equation 1 can be expressed in such a fashion.
Assume that the state at epoch tk is known and the solution at epoch tk+1 has to be computed. Assume

further the time span between tk and tk+1 is small; hence, A(t) and B(t) can be considered as constant matrices,
Ak and Bk respectively. It can be shown ([4]) that the solution can be estimated as follows:

x̂k+1 = Φ(tk+1, tk)x̂k +
∫ tk+1

tk

Φ(tk+1, τ)Bku(τ)dτ

where
Φ(tk+1, τ) = eAk∆τ (3)

with ∆τ = tk+1 − τ . From a computational point of view, equation 3 can be approximated by means of its
expansion in power series up to some degree j.

Φj(tk+1, τ) = I + Ak∆τ +
1
2!

(Ak∆τ )2 +
1
3!

(Ak∆τ )3 + · · ·+ 1
j!

(Ak∆τ )j (4)

The accuracy of the navigation solution depends on the approximation of equation 3. As more terms of the
serie 4 are calculated, more accurate the solution is. However, this matrix has to be computed at every epoch.
Hence, this method highly increases the computational burden if high accuracy is desired, specially when the
state vector is of big dimension. The interested reader is referred to [2, 4] for more information about the
transition matrix.

3 Multistep and predictor-corrector methods

The numerical methods exposed in the previous sections shared a common feature: the estimation of the
state at the epoch tk+1 depended only on the solution given at epoch tk. The family of methods with such
characteristic are called one-step methods. Contrary on the one-step methods, multistep methods use previous
states x̂k, x̂k+1, . . . , x̂k+r−1, r ≥ 2 for the estimation of the state at epoch tk+r, x̂k+r. The order of the method
is characterized by the number r; if r previous states are used to compute the solution, it can be proved that the
method has order r. On the other hand, if r states are needed to estimate the state at every epoch, the states
at the r first epochs are needed in order to start integrating. As this information is not usually available, the
use of a one-step method r − 1 times (for example, Euler method) in order to initialize the multi-step method
can be an option.

Assume now that the initial value problem 2 has to be solved for epoch tk+r, and that the solutions
x̂k, x̂k+1, . . . , x̂k+r−1, r ≥ 2 are available. The two fundamental ideas behind the multistep methods are the
fundamental theorem of calculus and the interpolation by polynomials. The fundamental theorem of calculus
states that the following equality holds for a continuous function f

xk+r − xk+r−1 =
∫ tk+r

tk+r−1

f(x,u, s)ds (5)

Therefore, the goal is to calculate the right side of the equation 5. For this purpose, the function f is interpolated
at the epochs tk, tk+1, . . . , tk+r by a polynomial of degree r. Let be Ψr(t) the Lagrange interpolating polynomial
of degree r.

Ψr(t) =
r∑

j=0

f(x̂k+j ,uk+j , tk+j)Lk+j(t)

where

Lk+j(t) =
r∏

i=0
i 6=j

t− tk+j

tk+i − tk+j

Hence, isolating xk+r and considering again that only approximations of the solution are known, it holds that

x̂k+r = x̂k+r−1 +
r∑

j=0

f(x̂k+j ,uk+j , tk+j)
∫ tk+r

tk+r−1

Lk+j(s)ds (6)



Assuming that ti+1− ti = h,∀i and by means of the change of variable s = tk+r−1 +ht, the integral of the right
side can be calculated and it can be seen that

x̂k+r = x̂k+r−1 + h
r∑

j=0

βjf(x̂k+j ,uk+j , tk+j) (7)

where

βj =
∫ 1

0

r∏
i=0
i 6=j

s− (r − j − 1)
i− j

ds

The particular case where βr 6= 0 and β0 = 0 (not interpolating in the epoch tk) leads to the well known
Adams-Moulton methods. On the other hand, in the case where βr = 0 and β0 6= 0 (not interpolating in the
epoch tk+r) one obtains the family of the Adams-Bashforth methods. As an example, the different values for βi

for the case r = 4 are summarized in table 1.

Adams-Moulton Adams-Bashforth

β0 – 55
24

β1
9
24 - 59

24
β2

19
24

37
24

β3 - 5
24 - 9

24
β4

1
24 –

Tab. 1: Values for the Adams-Moulton and Adams-Bashforth formulae for r = 4

Observe that in the case of the Adams-Moulton methods, the unknown appears both in the left and right
sides of the equation 7. The methods with this characteristic are called implicit methods, in opposition to
the explicit methods, where the unknown can be isolated in the left side of the equation. Euler, RK4 or
Adams-Bashforth methods are examples of explicit methods.

Back to the Adams-Moulton method, this implicit problem might be solved by means of the following
iterative scheme:

x̂
(i+1)
k+r = x̂k+r−1 + hβrf(x̂

(i)
k+r,uk+r, tk+r) + h

r−1∑
j=1

βjf(x̂k+j ,uk+j , tk+j) (8)

for i = 1, 2, . . . Of course, a good initial approximation is essential for the convergence of the iterative scheme 8.
The explicit Adams-Bashforth methods provide excellent means for estimating a first approximation of the
state. The procedure to follow is, first, do a prediction step using the Adams-Bashforth explicit method in order
to compute a seed for the iterative scheme corresponding to equation 8; afterwards, feed such equation with
this estimation and correct it by means of an Adams-Moulton implicit method. This sort of procedures are
the so-called predictor-corrector methods. One might think that the more you iterate equation 8, the best the
approximation to the solution; nevertheless, generally one iteration is enough. See [3] for further details about
this topic.

Now the philosophy behind the predictor-corrector methods has been explained, but from the way it has
been described it suffers from the same drawbacks of the RK4 methods. This drawback is essentially that
the integrating step-size is fixed. It has been already commented in previous sections the impact of such
constraint. The goal now is go one step further and construct a method, based on the philosophy of the multi-
step predictor-corrector methods but with independent step-size, in other words, from now on the assumption
that tk+1 − tk = h,∀k will not be required. The next section will explain how to construct such method.

It is worth to make a last remark about the exposed methods. From formula 7 one might be tempted to think
that for an rth order multistep method, r evaluations of the field are needed. However, a closer look at formula 7
shows that for calculating the solution at epoch tk+r, actually just one evaluation is needed since the previous
ones at epochs tk+j , j = 0, 1, . . . , r−2, in the case of the Adams-Bashforth methods and j = 1, 2 . . . , r−1 for the
Adams-Moulton’s, were already used for estimating x̂k+r−1. Hence, the there is no need of recalculating them
(they might be stored in memory, for example), and only f(x̂k+r−1,uk+r−1, tk+r−1) for the Adams-Bashforth
case and f(x̂k+r,uk+r, tk+r) for the Adams-Moulton need to be computed.

3.1 A fourth-order variable step-size multistep predictor-corrector method

Recall from the previous section that the construction of a multistep method essentially consisted in calculating
the different values of βi, i = 0, 1, . . . , r. This values were the result of evaluating the integral written on the



right side of the equation 6. This calculus was done by means of the change of variable s = tk+r−1 − ht. This
change of variable was constrained by a fixed integration step h; now, as said before, this constraint does not
necessary hold. One of the strategies for integrating the polynomials Lk+j(s) with a non-constant step-size hk

is by means of the change of variables defined by t = s − tk+r−1. Note that since the integration step is not
necessary constant, the recalculation of the β’s at every epoch is unavoidable. Nevertheless, this does not imply
a dramatic increasing of the computation time since the formulae are quite simple. The modified formulae for
the Adams-Bashforth and Adams-Moulton methods are exposed below. Only the fourth order case (r = 4) is
considered. Again, the goal is it to numerically solve the initial value problem 2 at epoch tk+1 provided that
the solutions xk−3,xk−2,xk−1,xk are known.

•Adams-Bashforth formulas
General formula:

xk+1 = xk + hk(β3kfk + β2kfk−1 + β1kfk−2 + β0kfk−3)

The formulas for β0k, β1k, β2k and β3k are,

β0k =
ζk

12hk−1(hk−1 + hk−2)(hk−1 + hk−2 + hk−3)

β1k = − ξk

12hk−1hk−2(hk−2 + hk−3)
hk

β2k =
3h2

k + 4hk(2hk−1 + hk−2 + hk−3) + 6hk−1(hk−1 + hk−2 + hk−3)
12hk−2hk−3(hk−1 + hk−2)

hk

β3k = −3h2
k + 4hk(2hk−1 + hk−2) + 6hk−1(hk−1 + hk−2)
12hk−3(hk−2 + hk−3)(hk−1 + hk−2 + hk−3)

hk

where

ζk = 3h3
k + 4h2

k(3hk−1 + 2hk−2 + hk−3)

+6hk

(
hk−1(3hk−1 + 4hk−2 + 2hk−3) + hk−2(hk−2 + hk−3)

)
+12hk−1

(
hk−1(hk−1 + 2hk−2 + hk−3) + hk−2(hk−2 + hk−3)

)
ξk = 3h2

k + 4hk(2hk−1 + 2hk−2 + hk−3)
+6hk−1(hk−1 + 2hk−2 + hk−3)
+6hk−2(hk−2 + hk−3)

•Adams-Moulton formulas
General formula:

xk+1 = xk + hk(β4kfk+1 + β3kfk + β2kfk−1 + β1kfk−2) (9)

The formulas for β4k, β3k, β2k and β1k are,

β1k =
3h2

k + 4hk(2hk−1 + hk−2) + 6hk−1(hk−1 + hk−2)
12(hk + hk−1)(hk + hk−1 + hk−2)

β2k =
h2

k + 2hk(2hk−1 + hk−2) + 6hk−1(hk−1 + hk−2)
12hk−1(hk−1 + hk−2)

β3k =
3hk − 2(2hk + hk−1 + hk−2)

12hk−1hk−2(hk + hk−1)
h2

k

β4k =
hk + 2hk−1

12hk−2(hk−1 + hk−2)(hk + hk−1 + hk−2)
h2

k

4 Applications to INS/GNSS integration

With the exception of strategic-grade IMUs, it is well known that an INS by itself does not perform well when
estimating precise trajectories during long periods of time. Free inertial navigation is affected by large, time-
dependent, time-growing errors; for this reason, the INS is usually aided with external measurements. Typically,
this aid comes from the observations of one or two GNSS receivers in order to bound the errors and drifts of
the IMU sensors and to calibrate them. The combined use of INS and GNSS technologies leads to a technology
synergy widely known as INS/GNSS navigation. As the goal of this paper is not to discuss the performance
details of the INS/GNSS systems, the reader is referred to [2] for further information. This section is devoted
to the applications of the above presented numerical algorithm for the INS/GNSS integration. First, the reality



of the INS/GNSS will be presented and afterwards it will be seen that the proposed approach adapts to that
reality and it overcomes the limitations of the present algorithms.

As mentioned in section 1, the classical approach to the INS/GNSS integration is the Kalman filter. For
the sake of clarity, a brief description is outlined in the following lines. In the Kalman filter approach, the
navigation solution is essentially calculated integrating equation 1 until a GNSS observation comes. When one
inertial measurement and one GNSS observation occur at the same epoch, the navigator first estimates the state
by means of an integration step of equation 1 and then, an optimal state is calculated by blending the predicted
state and the GNSS observation in a Kalman filter. The interested reader in the Kalman filter approach to
INS/GNSS integration and trajectory determination is again referred to [2] for further details.

The Kalman filter approach assumes that the clocks of the IMU and the GNSS receiver are synchronized
and that one inertial measurement and one GNSS observation concur at the same epoch periodically. This
theoretical hypothesis is depicted in figure 1. As seen in picture 1, the two data streams have constant time
spans between two consecutive observations; moreover, there is an epoch at which IMU measurement and a
GNSS observation coincide (at such epoch the Kalman filter step is performed). Let fIMU and fGNSS be the
IMU frequency and GNSS receiver frequency respectively and tIMU

k and tGNSS
k the epochs of the IMU and

GNSS receiver clocks respectively. In this ideal case it holds that fIMU = n · fGNSS for some n ∈ N and
tIMU
k = tGNSS

k for some k. The reality, however, is not that simple and, depending on the quality of the IMU’s
clock and the particular features of the IMU/GNSS assembly, several scenarios might occur. Figure 2 depicts
the situation where the output data rate of the IMU is constant but the data stream is slightly shifted from the
stream of the GNSS observations. In other words, fIMU = n ·fGNSS for some n ∈ N and tIMU

k = tGNSS
k + t0 for

some k and fixed t0. Going one step further, an even worse scenario can be considered, and this is the case where
the frequency of the IMU, although being constant, is such that fIMU 6= n · fGNSS ,∀n ∈ N. This situation is
depicted in figure 3. Finally, the worst scenario is the case where the fIMU ≈ f and tIMU

k = tGNSS
k + t0, where

f is the nominal frequency of the IMU. Figure 4 shows this situation. Note that there are data gaps both in
the IMU and GNSS data streams. This situation is quite common in the INS/GNSS integration and will be the
one considered in this paper. (If the proposed approach succeeds in overcoming all the inconveniences of this
scenario, it will also be able to deal with the other ones.) As mentioned before, depending on the quality of the
IMU, the GNSS receiver and the data acquisition system, the consistency level of the inertial and GNSS data
streams can be very different. The worst consistency level is usually found when integrating low-cost (typically
automotive grade) IMU with low-cost GNSS receivers. Therefore, the proposed approach can be used in the
currently emerging fields of automotive, pedestrian, lightweight UAV navigation, etc...

In other words, it is better to give up any assumption on data synchronization, specially for IMU observations.
The classical solution to overcome these situations is to manipulate the data in order to adapt them to the
algorithms. Three solutions might be considered:

• resample/interpolate all IMU observations (and [GNSS] measurements, if necessary) to the ideal situation.

• resample/interpolate [GNSS] measurements to IMU epochs.

• resample/interpolate IMU observations to [GNSS] measurements epochs.

Nevertheless, due to the noisy nature of the inertial observations, interpolation has to be considered a last resort
and avoided if possible. It will seen that the proposed approach completely avoids the need of interpolating
inertial (or external [GNSS]) measurements. The interpolation of inertial measurements is also needed when the
inertial observations are not delivered at their nominal frequency due to the fact that the RK4 have constant
step-size (Euler method is not considered due its poor accuracy). Remember that the proposed numerical
method consisted in the combination of a prediction step (by means of an explicit method) with a correction
step (an implicit method). When the navigation solution is estimated by means of the integration of the
equation 1, a prediction-correction step is made at each epoch considering the integration step as the time span
between two consecutive inertial measurements. These steps are depicted in figures 5 and 6. Assuming that
the state at time tk+1 has to be estimated, and by means of the knowledge of the states x̂k−3, x̂k−2, x̂k−1 and
x̂k, the Adams-Bashforth [prediction] step calculates a fourth-order approximation of the state x̂ −k+1 (figure 5).
Then, by means of an Adams-Moulton [correction] step, the previous states x̂k−2, x̂k−1, x̂k and the predicted
state x̂ −k+1, the state x̂k+1 is estimated (figure 6).

The INS/GNSS navigation also benefits from the proposed approach to overcome the weak points of such
technology. The weakness of the INS/GNSS navigation (from a computational point of view) is basically the
[potential] poor synchronization between the the INS and GNSS receiver clocks. In case of not having time
synchronization in such sense, difficulties to perform the Kalman filter step arise. Remember that the Kalman
filter approach assumes an inertial observation and a GNSS observation to concur periodically at some epoch.
This ideal situation rarely happens (at least in low-cost INS/GNSS systems). Actually, to do the Kalman filter
step at a GNSS epoch, an inertial observation is not essential; what is essential is an estimation of the state at
such epoch. In the absence of an inertial observation at the mentioned epoch, the state can be estimated by
means of an Adams-Bashforth step. The integration step is set as the time span between the GNSS epoch and the



inertial measurement of the previous epoch. This situation is graphically represented in figure 7. This provides
a fourth-order estimation of the solution, and therefore the Kalman filter can be performed. Nevertheless, once
the Kalman filter step is done, the navigator has to continue integrating using the INS mechanization equations;
hence, an inertial measurement at the GNSS epoch is required to initialize the predictor-corrector algorithm.
Again, what is needed is not the inertial measurement but the evaluation of the field at the GNSS epoch. The
strategy to estimate the field at that point is to make use of the Adams-Moulton method. Remember that the
Adams-Moulton algorithm is an implicit method, this is, the unknown is both in the right and left side of the
equation (see equation 9). However, what was the unknown (the state) for corrector is already known from the
predictor. Furthermore, an optimal estimation has been calculated by means of a Kalman filter step. A closer
look at equation 9 reveals that the evaluation of the field at the desired epoch can be easily isolated. Hence,
isolating the unknown, the estimated evaluation of field at the desired epoch is:

β4k f̂
−

k+1 =
x̂k+1 − x̂k

hk
− (β3k f̂k + β2k f̂k−1 + β1k f̂k−2)

where f̂
−

k+1 is the estimation of the field’s value at the GNSS epoch. This procedure is depicted in the figure 8.
This allows for an initialization of the predictor-corrector method and the equation 1 can be integrated until
the next Kalman filter step.

Note that the fourth-order variable step-size multistep predictor-corrector method does not depend on a
nominal frequency. In other terms, the proposed numerical integration scheme adapts itself to the realities of
the INS/GNSS data streams, which seems to make more sense than adapting the data to the limitations of the
algorithms.

5 Conclusions and ongoing work

The problem of the numerical integration of the INS mechanization equations has been presented. The classical
methods —Euler, RK4 and transition matrix— have been outlined, their pitfalls exposed and an alternative
to them described. The alternative is a fourth-order variable step-size multistep predictor-corrector method,
derived from the classical Adams-Bashforth and Adams-Moulton formulae.

It has been also shown that the RK4 and the Euler methods are not well suited for the INS and INS/GNSS
realities. Variable step-size predictor-corrector multistep methods are able to overcome this limitations in a
fairly way. The described method preserves all the good properties of the Euler method and the RK4: it is
of fourth order, can adapt its integration step to the inertial data rate and does not dramatically increases
the computational burden. As said before, it adapts to the INS and GNSS realities, contrary to the classical
approaches that adapt the reality to themselves. Further research includes the validation of the proposed
numerical method.
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[1] Engeln-Müllges, G., Uhlig, F.,“Numerical Algorithms with C”, Spinger-Verlag, 1996.

[2] Jekeli, C., “Inertial Navigation Systems with geodetic applications”, Walter de Gruyter, 2001.

[3] Press, W.H. et al., “Numerical Recipies in C”, Cambridge University Press, 1997.

[4] Maybeck, P.S., “Stochastic Models, Estimation and Control. Volume 1”, Mathematics in Science and
Engineering, Volume 141-1, 1994.

[5] Stoer, J., Bulirsch, R., “Introduction to Numerical Analysis”, Spinger-Verlag, 1992.



6

-

t

oIMU

xGPS

Fig. 1: Ideal IMU/GNSS scenario.
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Fig. 2: Time shift between the IMU and GNSS data streams.
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Fig. 3: IMU and GNSS data streams unsynchronizated by a scale factor and a time shift.
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Fig. 4: Data streams with gaps and non-constant IMU frequency and data gaps.
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Fig. 5: INS integration. Predictor step.
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Fig. 6: INS integration. Corrector step.
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Fig. 7: INS/GNSS integration. Prediction and Kalman filter step.
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Fig. 8: INS/GNSS integration. Initialization after a Kalman filter step.


