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Abstract

Change detection methods for multi- and hypervariate data look for differences in data acquired over the same area
at different points in time. These differences may be due to noise or differences in (atmospheric etc.) conditions
at the two acquisition time points. To prevent a change detection method from detecting uninteresting change due
to noise or arbitrary spurious differences the application of regularisation also known as penalisation is considered
to be important. Two types of regularisation in change detected by the multivariate alteration detection (MAD)
transformation are considered: 1) ridge regression type and smoothing operators applied to the estimated weights in
the MAD transform; and 2) pre-processing (before applying the MAD transformation) by noise reducing orthogonal
transformations where the number of retained transformed variables can be considered a regularisation parameter.
Regularisation by the former methods smooth the weights given to the individual bands in the MAD transformation
and thus it penalises weights that fluctuate wildly as a function of wavelength; regularisation by the latter methods
tends to smooth in the image domain. Also, regularisation may be necessary to prevent numerical instability especially
when working on hyperspectral data.
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1. Introduction

Change detection methods for multi- and hyperspectral data ideally find differences in data acquired over the same
geographical region at different points in time. These differences may be due to not only actual change on the ground
but also to noise or differences in (atmospheric etc.) conditions at the two acquisition time points. To prevent a change
detection method from detecting uninteresting change due to noise or arbitrary spurious differences the application
of regularisation also known as penalisation is considered to be important. In this paper two types of regularisation in
change detected by the canonical correlation analysis based multivariate alteration detection transformation are con-
sidered. Regularisation may be necessary to prevent numerical instability especially when working on hyperspectral
data.

2. Regularisation by smoothing the weights

In ordinary least squares (OLS) regression [17]

y = Xθ + e (1)

(y is n × 1, X is n × p and θ is p × 1, where n is the number of observations and p is the number of parameters) we
solve for θ by minimising eT e which leads to the normal equations

(XT X)θ̂ = XT y (2)

or (formally)

θ̂ = (XT X)−1XT y. (3)

To avoid possible (near) singularity problems in XT X we may minimise eT e + k
2
θT θ instead. This leads to

(XT X + kI)θ̂ = XT y (4)

where I is the p × p unit matrix. We see that by doing this we punish or penalise [20, 21, 16] high values of the
elements of θ. In other words with increasing k the elements of θ tend to become closer to zero. k can be chosen
(stipulated) or estimated from the data by cross-validation. This type of regression is termed ridge regression [8].



More generally we may penalise other characteristics of θ than size by minimising

eT e +
k

2
(Lθ)T (Lθ) (5)

where L is some matrix. This leads to

(XT X + kΩ)θ̂ = XT y (6)

with Ω = LT L. In the above simple case we have Ω = I (= L = L0 = LT
0
L0).

Say instead we wanted to force all elements of θ to be equal. This can be done by setting L1θ = 0 where L1 is
(p − 1) × p with

L1 =
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(7)

leading to the desired

L1θ =
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, (8)

i.e., θ1 = θ2, θ2 = θ3, . . . , θp−1 = θp.

Rather than forcing the elements of θ to be equal we may want to penalise curvature in the elements of θ. For this to
make sense some ordering of the elements of θ is assumed; in remote sensing this ordering could be by wavelength.
The desired minimum curvature can be achieved by setting L2θ = 0 where L2 is (p − 2) × p with

L2 =











1 −2 1 0 · · · 0
0 1 −2 1 · · · 0
...
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0 0 · · · 1 −2 1











(9)

leading to p × p

Ω = LT
2
L2 =



























1 −2 1 0 0 0 0 · · · 0 0 0 0 0 0 0
−2 5 −4 1 0 0 0 · · · 0 0 0 0 0 0 0
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0 0 0 0 0 0 0 · · · 0 0 0 0 1 −2 1



























(10)

which is penta-diagonal.

Of course we can combine these different ways of penalising the elements of θ to obtain a desired structure or desired
characteristics of the solution by using

Ω = w0L
T
0
L0 + w1L

T
1
L1 + w2L

T
2
L2 + · · · . (11)

2.1 Canonical correlation analysis

In a canonical correlation analysis (CCA) [7, 4, 1] based change detection scheme termed multivariate alteration
detection (MAD) [9, 12, 13, 10, 14, 3, 2, 15, 11] for geometrically co-registered p× 1 data X from one point in time
and q × 1 data Y from another point in time we solve the eigenproblem

[

0 Σ12

Σ21 0

][

a

b

]

= ρ

[

Σ11 0
0 Σ22

] [

a

b

]

(12)



or
[

Σ11 Σ12

Σ21 Σ22

] [

a

b

]

= (ρ + 1)

[

Σ11 0
0 Σ22

][

a

b

]

(13)

to obtain the desired change detector. Σ11 is the variance-covariance matrix of X , Σ22 is the variance-covariance
matrix of Y and Σ12 is the covariance matrix between the two, Σ21 = ΣT

12
. a is the eigenvector containing the

weights with which to multiply X from the one point in time and b is the eigenvector containing the weights with
which to multiply Y from the other point in time. To do change detection we form the canonical variates U = aT X

and V = bT Y and the MAD change detector as the difference U − V between them. More well known expressions
for the CCA problem are the coupled eigenproblems

Σ12Σ
−1

22
Σ21 a = ρ2Σ11 a (14)

Σ21Σ
−1

11
Σ12 b = ρ2Σ22 b. (15)

If we wish to apply regularisation in this case we could solve
[

0 Σ12

Σ21 0

] [

a

b

]

= ρ

[

Σ11 + k1Ω 0
0 Σ22 + k2Ω

][

a

b

]

(16)

where k1 and k2 determine the amount of regularisation.

3. Regularisation by orthogonal transformation pre-processing

The change detected by the MAD method is invariant to separate linear (affine) transformations in the originally
measured variables such as

1. changes in gain and offset in the measuring device used to acquire the data;

2. data normalisation or calibration schemes that are linear (affine) in the gray values of the original variables; or

3. orthogonal or other affine transformations such as principal component (PC) [6] or maximum autocorrelation
factor (MAF) transformations [18, 19, 5].

This characteristic can be utilised in a regularisation-type reduction of redundancy in hyperspectral data by means
of orthogonal transformations of the data at the two points in time separately before change detection by the MAD
method.

4. Results

To illustrate the two regularisation techniques we use 126 channel HyMap data covering a small agricultutal area in
Waging-Taching in Bavaria, Germany. The original data are shown in Figures 2 to 3.

To illustrate the effect of regularisation by smoothing the weights, i.e., the eigenvectors in the CCA Figure 1 shows
eigenvectors corresponding to the leading canonical variates from the HyMap data. Both non-regularised and regu-
larised eigenvectors are shown. In the regularised case we have applied k1 = k2 = 0.001 as an example.

To illustrate the effect of regularisation by orthogonal transformations Figures 4 to 8 show principal components
(PCs), maximum autocorrelation factors (MAFs) and MAD variates based on 40 MAFs. It is obvious that the MAFs
offer a much better representation of the joint signal in all the original spectral bands than do the PCs, see also [15, 11].

5. Conclusions

Two types of regularisation in multi- and hypervariate change detection are described and applied to hyperspectral
image data. The first type of regularisation is based on ridge regression type and smoothing operators applied to the es-
timated weights in the change detection transformation. The second type of regularisation is based on pre-processing
(before applying the MAD transformation) by noise reducing orthogonal transformations where the number of re-
tained transformed variables can be considered a regularisation parameter.



Figure 1: Eigenvectors with and without regularisation (k1 = k2 = 0.001) for an example with 126 channel HyMap
data.
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Figure 2: HyMap data from 30 June 2003 at 8:43 UTC covering an agricultural region near Lake Waging-Taching in
Germay, spectral bands 1 to 126 row-wise.



Figure 3: HyMap data from 4 August 2003 at 10:23 UTC covering an agricultural region near Lake Waging-Taching
in Germay, spectral bands 1 to 126 row-wise.



Figure 4: HyMap data from 30 June 2003 at 8:43 UTC covering an agricultural region near Lake Waging-Taching in
Germay, principal components 1 to 126 row-wise.



Figure 5: HyMap data from 4 August 2003 at 10:23 UTC covering an agricultural region near Lake Waging-Taching
in Germay, principal components 1 to 126 row-wise.



Figure 6: HyMap data from 30 June 2003 at 8:43 UTC covering an agricultural region near Lake Waging-Taching in
Germay, maximum autocorrelation factors 1 to 126 row-wise.



Figure 7: HyMap data from 4 August 2003 at 10:23 UTC covering an agricultural region near Lake Waging-Taching
in Germay, maximum autocorrelation factors 1 to 126 row-wise.



Figure 8: MAD variates 1-40 row-wise, based on 40 MAFs.
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