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ABSTRACT: 
 
The aim of this paper is to present the derivation and experimental evaluation of a simultaneous method for camera calibration using 
straight lines. A mathematical model using straight lines was derived to consider both interior and exterior orientation parameters as 
unknowns. The interior orientation parameters to be estimated are the camera focal length, the coordinates of the principal point and 
lens distortion parameters (radial and decentering). The mathematical model is based on the equivalence between the vector normal 
to the interpretation plane in the image space and the vector normal to the rotated interpretation plane in the object space. This model 
was implemented and tests with simulated and real data were performed. The discussion of the obtained results are presented in this 
paper. The results with the proposed model were compared with those obtained with conventional self calibrating bundle adjustment 
and it is shown that the results are similar.  
 
 

                                                                 
 

1. INTRODUCTION 

Camera calibration is a fundamental task in Photogrammetry 
and Computer Vision. The lack of accurate inner orientation 
parameters leads to unreliable results in the photogrammetric 
process. Calibration and orientation of digital images using 
lines have gained interest, basically due to the potential of 
automation and the robustness of some methods of line 
detection. Another remarkable advantage of using lines is the 
number of observations that can be provided, improving 
significantly the overall system redundancy.  

 
The classical calibration or space resection methods solve the 
problem by using points in a bundle adjustment. The non-linearity 
of the model and problems in point location in digital images are 
the main drawbacks of these approaches. The proposed solutions 
to overcome these problems include either the use of linear 
models (Lenz and Tsai, 1988) or the use of linear features: 
Lugnani (1980), Masry (1981), Tommaselli and Lugnani (1988), 
Mulawa and Mikhail (1988), Haralick (1989),  Liu et al (1990), 
Wang and Tsai (1990), Lee et al (1990), Tommaselli and Tozzi 
(1996), Quan and Kanade (1997), Habib et al (2002), Habib et al 
(2003), Schenk (2004). Most of these works deals only with 
Exterior Orientation Parameters (EOP). Ethrog (1984), however, 
presented a photogrammetric method for determining the 
Interior Orientation Parameters (IOP) and the orientation 
angles, using objects with parallel and perpendicular lines, 
considering photographs taken with non-metric cameras.  
 
One of the earliest approaches using lines in Photogrammetry 
was the plumb line calibration method (Brown, 1971). This 
method is suitable to recover the radial and decentering lens 
distortion coefficients, while the remaining interior (focal 
length and principal point coordinates) and exterior orientation 
parameters have to be determined by a complimentary method. 
A similar method was presented by Prescott and McLean (1997) 

who compared their line based method for calibration of radial 
lens distortion with the point based linear method of Tsai (Lenz 
and Tsai, 1988) and reported similar results showing the accuracy 
potential of line based approaches. Tommaselli (2000) and Telles 
and Tommaselli (2002) proposed and additional step in which the 
coordinates of the principal point and the focal length could be 
computed using lines. 
 
Several other available methods using lines, consider the 
determination of exterior orientation parameters, with no 
mention to the simultaneous determination of inner orientation 
parameters, which are considered known from previous 
calibration.  
 
The digital cameras produced for the consumer market differ in 
size, cost and stability of the inner geometry in comparison to 
the metric analog cameras. As a consequence, when using 
digital non-metric cameras for metric purposes, it is 
recommended to use on-the-job calibration methods, or rely on 
periodic calibrations. Calibration fields with straight lines are 
easy to build and this will facilitate periodic calibrations of 
digital cameras.  
 
The main goal of this work was to derive a mathematical model 
relating image and object space using straight lines and 
considering also the interior orientation parameters as 
unknowns. This model was implemented and tested with 
simulated and real data. The results obtained with the proposed 
model were compared with those obtained with conventional 
calibration with bundle adjustment.  
 

2. MATHEMATICAL MODEL 

In this section the mathematical model using straight lines will 
derived considering both interior and exterior orientation 
parameters as unknowns. The interior orientation parameters to 



 

be estimated are the camera focal length, the coordinates of the 
principal point and lens distortion parameters (radial and 
decentering). The mathematical model is based on the 
equivalence between the vector normal to the interpretation 
plane in the image space and the vector normal to the rotated 
interpretation plane in the object space, and it is an expansion of 
the equivalent plane model, proposed by Tommaselli and 
Lugnani (1988) and revived by Tommaselli and Tozzi (1996).  
 

Figure 1. Interpretation plane and normal vectors. 
 
The interpretation plane contains the straight line in the object 
space, the projected straight line in the image space, and the 
perspective centre of the camera (PC) (Fig. 1). 
 
In the original equivalent plane model the vector n, normal to the 
interpretation plane in the image space, was expressed was a 
function of the focal length and the θ-ρ  parameters of the straight 
line in the photogrammetric reference system. In order to include 
the lens distortion parameters and the coordinates of the principal 
point in the model, the straight line in the image space have to be 
expressed by the coordinates of its endpoints. Considering the 
Conrady-Brown lens distortion model the coordinates of an image 
point in the photogrammetric reference system can be given by 
eq. 1.  
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where: 
x, y       are the photogrametric coordinates; 
x’, y’   are the observed point coordinates related to a centered 
image system; 
K1, K2, K3   are the radial lens distortion coefficients; 
P1, P2    are the decentering distortion coefficients; 
x0, y0   are the coordinates of the principal point; 

0' xxx −= ; 

0' yyy −= ; 

yxr += . 
 
The vector n, normal to the interpretation plane in the image 
space, can then be written as the following vector product: 
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where: 
1212 xxx −=∆ ; 

1212 yyy −=∆  
c  is the camera focal length. 
 
The vector N, normal to the interpretation plane in the object 
space, is defined by the vector product of the direction vector  
(P2 - P1) of the straight line and the vector difference (PC - P1) 
(See Fig. 1). 
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where: 

1212 XXX −=∆ ; 

1212 YYY −=∆ ; 

1212 ZZZ −=∆ ; 

0101 XXX −=∆ ; 

0101 YYY −=∆ ; 

0101 ZZZ −=∆ . 
 
X0 , Y0 , Z0 are the coordinates of the Perspective Centre (PC) of 
the camera related to the object reference system;  X1 , Y1 , Z1  and 
X2 , Y2 , Z2  are the 3D coordinates of two endpoints in the object 
straight line.  
 
Multiplying vector  N  by the rotation matrix R  eliminates 
angular differences between the object and the image reference 
systems and results in a vector normal to the interpretation plane 
in object space that has the same orientation as vector  n, normal 
to the interpretation plane in the image space, but different in 
magnitude.  
 

 R.N = .nλ
r r

                                         (4) 
 
Where  λ is a scale factor and R is the rotation matrix defined by 
the sequence Rz(κ).Ry(ϕ).Rz(ω) of rotations. 
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Expanding (5) gives: 
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In order to eliminate the element λ the first and the second 
equations of (6) are divided by the third one, giving: 
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By substituting the distortion equations (1) in (7) gives the final 
model. 
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In the original equivalent planes model (Tommaselli and Tozzi, 
1996) there was a need to explicitly isolate the observations, in 
order to use the Iterated Extended Kalman Filtering, in a 
sequential approach. Due to this need and to avoid divisions by 
zero, two groups of equations were derived, depending on the 
line orientation in the image. In the current case, a different 
strategy for deriving the model was used, because a more 
general estimation model was adopted (Mikhail and Ackerman, 
1976), avoiding divisions and, therefore, generating just two 
equations suitable for lines of any orientation. 
 
Although the model has two endpoints coordinates as 
observations, it is not required that these image endpoints 
should be correspondent to endpoints in the object space, thus 
preserving one the main advantages of the line based models. A 
unified method of adjustment with weighted constraints to the 
parameters was used for parameter estimation giving a high 
degree of flexibility (Mikhail and Ackerman, 1976). The 
estimation method was implemented in C++ language. A 
conventional bundle adjustment based on collinearity equations 
was also implemented in order to be used as a reference 
method. A linear feature extraction method aiming at sub-pixel 
precision was implemented based on the analysis of a profile 
perpendicular to the edge orientation (Jain et al, 1995) 
 
 

3. EXPERIMENTS AND RESULTS 

The proposed method was implemented in C++ language and 
tested with simulated and real data. In this section some 
experiments and results are presented and discussed. 
 
3.1 Experiments with simulated data 
 
In order to perform the experiments with simulated data a set of 
43 straight lines and 43 points was defined in the object space 
(Fig. 2).   

 
 

 
 

Figure 2.  Simulated straight lines in the object space (units in 
mm). 

 
The interior orientation parameters and the effects of systematic 
errors in one of the image corners (x=17mm, y=17mm) are 
presented in Table 1, supposing a digital camera with a 
35x35mm frame. 
 
Figure 3 depicts the six generated images with different exterior 
orientation in order to guarantee a suitable level of 
convergence. 
 

Effect of systematic errors 
in the image coordinates of 
point in the image corner 

IO parameters Simulated 
Value 

x y 
c (mm) 35.0 - - 
x0 (mm) 0.2 0.2 - 
x0 (mm) 0.3 - 0.3 

K1 (mm-2)  1.0E-05 0.098 0.098 
K2 (mm-4) 2.0E-09 0.011 0.011 
K3 (mm-6) 5.0E-12 6.83E-04 6.83E-04 
P1 (mm-1) 2.0E-05 0.023 0.035 
P2 (mm-1) 3.0E-05 0.012 0.017 

 
Table 1.  Simulated Interior Orientation Parameter (IOP) and 

the effects of systematic errors in an image point on the image 
corner 

 
Approximated values for the unknowns used in the estimation 
process were given with errors of 0.3 rad for rotations and 150 
to 250 mm for the PC coordinates. Initial values for the interior 
orientation parameters were also considered with errors: 45 mm 
for the focal length, zero for the coordinates of the principal 
point and for the lens distortion parameters. The coordinates of 
the endpoints of the straight lines in the object space were 
supposed to have an error of 0.25 mm in its components. 
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Figure 3.  Simulated images. 

 
Using this data set, several experiments were performed varying 
the following data: 
• the magnitude of the random errors introduced in the 

image coordinates; 
• Camera position and orientation; 
• Configuration of the straight lines in the object space. 

 
The same data set was used in experiments using conventional 
calibration with bundle adjustment in order to compare the 
results. Due to the lack of space just one group of experiments 
will be presented in this paper. 
 
Experiments with different random errors 
 
Experiments with random errors with standard deviations of     
1 µm, 5 µm and 10 µm were accomplished. In all cases both 
IOP and EOP were correctly estimated, as can be seen 
comparing table 2 and table 1. The results were tested with a χ2

 
test with a significance level of 0.95 and were accepted. Table 2 
presents the IOP computed using simulated data with a standard 
deviation of 5 µm in the random errors.  



 

 
Method using straight 

lines 
Bundle Method  

with points 
 

IOP 
Estimated 

Value 
Standard 
Deviation 

Estimated 
Value 

Standard 
Deviation

c (mm) 34.96 2.4E-02 34.97 2.3E-02
x0 (mm) 0.19 1.6E-02 0.19 1.7E-02
x0 (mm) 0.31 1.5E-02 0.31 1.6E-02

K1 (mm-2)  8.1E-06 3.3E-06 9.7E-06 3.2E-06
K2 (mm-4) 7.6E-09 1.0E-08 2.7E-09 9.9E-09
K3 (mm-6) 1.3E-12 1.0E-11 5.5E-12 9.7E-12
P1 (mm-1) 2.5E-05 3.8E-06 2.6E-05 4.0E-06
P2 (mm-1) 2.6E-05 3.4E-06 2.5E-05 4.0E-06

 
Table 2 – Estimated IOP and their standard deviations using 

both straight lines and points with a standard deviation of 5 µm 
in the random errors. 

 
In order to assess the performance of the proposed method the 
IOP were also estimated by conventional self calibrating bundle 
adjustment. Similar redundancies were achieved in both 
procedures (225 image straight lines with 412 degrees of 
freedom, and 215 image points with 392 degrees of freedom). 

 
Analyzing the results presented in table 2 it can be verified that 
the values estimated from both methods are similar and are 
within the estimated standard deviations. Similar results were 
also achieved with other levels of random errors (1 µm, 10 µm) 
It is also clear that with that level of noise (5 µm) the 
coefficients K2 e K3 can be neglected.  
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Figure 4.  True errors in the IOP considering different levels of 
random errors in the observations: (a) errors in the focal length; 
(b) errors in the coordinates of the principal point; (c) errors in 

the lens distortion coefficients. 
 

A t Student statistical test was then applied and it was verified 
that the estimated standard deviations are compatible with the 
true errors at a level of significance of 0.05. If the magnitude of 
the random error is increased the quality of the estimated 
standard deviation decreases, but this also happened with the 
conventional self calibrating bundle adjustment with points. 
This is probable caused error propagation an over-
parametrization, because some high order of lens distortion can 
only be recovered with high quality image observations, but the 
verification of this hypothesis is left for future work. 
 
Figure 4 depicts true errors (discrepancies between the 
estimated and the true values) in the IOP considering the 
experiments in which several magnitudes of random errors in 
the observations were tested. As expected, true errors increases 
proportionally to the standard deviation of the random errors. 
Some parameters were better estimated with the straight line 
method (y0, P1, P2) whilst others presented better results with 
the conventional bundle method, but it cannot be stated with 
confidence which method is better with the performed 
experiments.  
 
3.2 Experiments with real data 
 
A close range test field, 2mx2m, with 16 black tiles (32 edges) 
over a white wall was built. The coordinates of two endpoints in 
each edge were measured with a metallic scale, with an 
uncertainty around 1mm.  
 
Five images (two of them convergent and one with 90o rotation 
around z axis) were taken with a Sony F828 digital camera (8 
megapixel) with a 50 mm focal length focused to the infinite. 
Two end points for each straight line were measured in these 
experiments using a subpixel extraction technique (Jain et al, 
1995).  
 
In order to assess the accuracy of the proposed method with real 
data the bundle method was also applied to enable the 
comparison of the estimated parameters for both methods. 
Control points in the object space were computed as the 
intersection of two edges and the measurement of its 
homologous in the image was performed by visual screen 
pointing.  
 
It is important to note that when using the straight line method 
there no need for point to point correspondence. 
 

 

   
 

Figure 5.  Test field with straight lines. 
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Figure 6.  Images used in the experiments with real data. 
 

In both group of experiments (with straight lines and with 
points) the following IOP were considered: focal length, 
principal point coordinates and first order radial lens distortion 
coefficient (K1). The decentering distortion coefficients and the 
higher order radial lens distortion coefficients were neglected 
after some preliminary experiments showing that their 
magnitudes were small and incompatible with the quality of the 
observed image coordinates. 
 
Table 3 presents IOP and the EOP of the first image, which 
were estimated using straight lines; in the last column the 
discrepancies related to the same parameters computed using 
self calibrating bundle method are presented. There were 200 
degrees of freedom for the experiment using straight lines and 
184 for the experiments using bundle adjustment with points. 
 
In general, the results have shown that the developed model is 
comparable to the conventional bundle method using control 
points. However, the EOP and the coordinates of the principal 
points presented higher discrepancies whilst the other 
parameters had similar results. These discrepancies can be 
explained by the correlations between parameters and by 
narrow coverage angle of the camera. Other problem is the 
correlation between the observations when using straight lines. 
A detailed analysis of the correlations between parameters and 
observations is recommended as part of a future work. 
 

 
Calibration using 

 straight lines 
IOP  

and EOP 
Estimated Value Estimated Standard 

Deviation 

Discrepancies 
with reference 
to the bundle 

method 

c  (mm) 51.991 0.121 -0.325
x0 (mm) -0.125 0.010 -0.482
y0 (mm) 0.124 0.058 0.018
K1 (mm-2) -5.94E-06 1.56E-06 5.11E-07
κ (rad) -2.95E-03 2.39E-04 -6.14E-03
ϕ  (rad) 3.17E-02 1.22E-03 1.90E-03
ω (rad) 8.61E-02 1.32E-03 -4.80E-04
X0 (mm) 1196.519 5.244 -30.755
Y0 (mm) 626.915 5.157 5.769
Z0 (mm) 4130.852 9.397 -28.408

 
Table 3 –   IOP and EOP estimated using straight lines and its 

discrepancies with those computed using bundle method. 
 
In order to assess the effect of the estimated IOP in the 
photogrammetric intersection when using different methods 
(straight line based method or conventional bundle method) a 
two photo resection was computed using 6 control points (fig. 

7). Then, coordinates of 15 check points were estimated using 
photogrammetric intersection.  

 

   
 

Figure 7.  Images used for checking the computed IOP; points 
highlighted were used as control points. 

 
The average of the discrepancies between the photogrammetric 
derived coordinates and the field true was 0.597±1.591 mm  
when using IOP computed with the straight line method and 
0.530±1.512 mm when using the IOP generated by bundle 
adjustment with points. The RMS of the discrepancies in XYZ 
coordinates were 1.702mm for the straight line based 
experiment and 1.604mm for the point based one.  
 
 

4. CONCLUSIONS 

The results obtained with the proposed method are statistically 
comparable with the conventional self calibrating bundle 
method with points, although the bundle method provided in the 
experiment with real data slightly better results. It is important 
to remember, however, that in this experiment the authors still 
did not take advantage of the potential redundancy provided by 
the straight lines. For each straight line only two equations were 
generated although there is a potential for using several pairs of 
equations. The potential for multiple line measurements and its 
impact in the final results is still a topic to be studied in future 
work. Another difference in comparison with the simulated 
experiments is that no oblique lines were used in the real test 
field.  
 
It still worth to note the advantages of line based calibration: 
flexibility; no need for point to point correspondence; lines can 
be extracted with subpixel accuracy. A topic of interest is the 
combination of points and lines, in order to get together the 
rigidity of points and the redundancy provided by lines. 
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