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Abstract- Accurate estimates of wetland above ground 

biomass (AGB) have increasingly been identified as a 

critical component for an efficient wetland monitoring 

and management system.  Multispectral remote sensing 

based indices have proven inadequate in estimating 

biomass especially at high canopy density. In this study 

we investigated the use of vegetation indices derived 

from field hyperspectral data to estimate papyrus 

(Cyperus papyrus) biomass. Spectral and above ground 

biomass measurements were collected at three different 

areas in the Greater St Lucia Wetland Park, South 

Africa. We evaluated the potential of narrow-band 

normalized difference vegetation index (NDVI) 

calculated from all possible two band combinations 

between 700 nm to 1000 nm. Subsequently, we utilized 

random forest (RF) as a modeling tool for predicting 

papyrus biomass. The results showed that papyrus 

biomass can be estimated at full canopy level under 

swamp wetland conditions (R2 = 0.73, RMSEP = 276 

g/m2; 8.6 % of the mean). From our results, random 

forest has proved to be a robust feature selection 

method in identifying the minimum number (n = 4) of 

narrow-band NDVIs that offered the best overall 

predictive accuracy. The results can be scaled to 

spaceborne or airborne sensors such as Hyperion or 

HYMAP for predicting vegetation biomass in wetland 

areas using remotely sensed data. 
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1. INTRODUCTION 

 

Papyrus (Cyperus papyrus L.) is increasingly being 

recognized as the most biomass productive plant species in 

the tropical wetlands in Africa (Muthuri and Kinyamario, 

1989). However, the continued degradation in papyrus 

habitat represents a significant threat to biodiversity 

conservation particularly for papyrus-specialist birds and 

other papyrus-reliant species in many African countries  

(Owino and Ryan, 2007).  Efficient techniques that can 

spatially and temporally monitor the stability of the 

productivity of papyrus ecosystems and whether significant 

changes are taking place in these swamp ecosystems are 

therefore required. Such techniques require up-to-date 

spatial information on the density of papyrus vegetation.  

 

The measurement of vegetation quantity, leaf area index 

(LAI) and percent green vegetation cover has successfully 

been achieved using vegetation indices such as Normalised 

Difference Vegetation Index (NDVI), Simple Ratio (SR), 

Transformed Vegetation Index (TVI) and Transformed Soil 

Adjusted Vegetation Index (TSAVI) (Gao et al., 2000; 

Mutanga and Skidmore, 2004a; Thenkabail et al., 2000).  

Although these indices have been successfully used in areas 

with open canopy cover or sparsely vegetated regions, they 

have not been successful in estimating quantity at high 

canopy density.  Specifically, the widely used vegetation 

indices particularly NDVI derived from broad band satellite 

images such as NOAA or Landsat TM tend to saturate after 

a certain biomass density (about 15 kgm-2 ) or vegetation 

age (15 years in tropical forest) (Lu and Batistella, 

2005,Gao et al., 2000; Tucker, 1977). Therefore, NDVI 

yields poor estimate during peak growing seasons and in 

more densely vegetated areas (Mutanga and Skidmore, 

2004a; Thenkabail et al., 2000).  Papyrus biomass is usually 

dense since it grows in wetland areas with adequate water 

availability. Such a high density poses a major problem in 

measuring using the existing remote sensing indices thus 

there is need to  improve techniques for better estimation of 

AGB in high diversity and densely vegetated areas such as 

wetlands where there is almost 100 % vegetation cover. 

 

Ensemble methods like random forest (Breiman, 2001) 

have been used to enhance the prediction accuracy in the 

field of ecology (Grimm et al., 2008; Prasad et al., 2006).  

A combination of indices derived from hyperspectral data 

with ensemble techniques such as the random forest could 

improve the prediction of ABG in high canopy density 

areas because of its capability to simultaneously explore 

indices based on the whole region of the electromagnetic 

spectrum (Ismail and Mutanga, 2009). 

 

This study sought to evaluate the utility of narrow-band 

NDVI derived from field spectrometry measurements for 

estimating papyrus AGB in complex and densely vegetated 

canopies, using the random forest algorithm.  AGB and 

spectral data from papyrus vegetation were collected in the 

summer of 2009 at the Greater St Lucia Wetland Park, 

South Africa, which is characterized by mixed species 

composition. 

 

2. MATERIAL AND METHODS 

2.1 Study area 

The study sites are located in the Greater St Lucia Wetlands 

Park (GSWP) on the eastern coast of South Africa. The 

park covers about three million hectares between longitudes 

32o21' E and 32o34' E and latitudes 27o34' S and 28o 24' S, 

and it is considered to be the largest estuarine system in 

Africa. This study focuses on approximately 7000 ha of 

wetland vegetation located on three sites i.e. Futululu Park, 

and the Mfabeni and Mkuzi swamps .At these sites, 

papyrus (Cyperus papyrus) occurs in large areas between 

forested dunes and plantation forest on organic and alluvial 

soil.  

 

2.2 Field spectral measurements and biomass harvesting 

Random sampling was adopted in this study. A 30 m by 30 

m vegetation plot was created to cover an area of papyrus. 

Three subplots (1 m × 1 m) were then randomly selected to 

cover a homogenous area of papyrus within each plot (30 m 

× 30 m) to measure the spectral reflectance. The spectral 

reflectance measurements were performed in the spectral 
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range from 350 nm to 2500 nm under sunny and cloudless 

conditions using the Analytical Spectral Devices (ASD) 

FieldSpec® 3 spectrometer. From each subplot (1 m × 1 m) 

approximately 5 to 10 field spectrometer measurements 

were randomly taken at nadir from 1 m using a 5o field of 

view. These spectral measurements were then averaged to 

obtain the final spectral measurement for each vegetation 

plot. After spectral measurements, fresh papyrus biomass 

was clipped within the subplots (1 m × 1 m). All dry 

material was removed from the clipped plants and fresh 

above ground biomass (AGB) was then measured 

immediately using a digital weighing scale.  

2.3. Data analysis 

2.3.1. Narrow band indices 

The narrow NDVI-based vegetation indices were computed 

in this study from all possible two band combinations using 

all the red, red edge, and NIR bands (i.e. 600 nm to 1000 

nm). These indices and spectral regions were selected 

because they are the most commonly used in estimating 

biomass and crop yield (Cho et al., 2007; Mutanga and 

Skidmore, 2004a; Thenkabail et al., 2000). The discrete 401 

narrow bands allowed a computation of N*N = 160,801 

narrow band indices.  

 2.3.2 Random forest regression ensemble 

The random forest (RF) algorithm (Breiman, 2001) was 

used in this study to predict the AGB of papyrus (g m-1). 

The algorithm generates multiple bootstrap samples from 

the original training data set with replacement to create 

multiple regression trees (ntree). Each tree is grown to 

maximum size without pruning with a randomized subset of 

predictors (mtry) to determine the best split at each node of 

the tree (Breiman, 2001). The results from each aggregation 

are then averaged to get the overall prediction accuracy. 

When a bootstrap sample is drawn, about 37 % of the 

dataset is excluded from the sample and the remaining data 

are replicated to bring the dataset to full size. This dataset is 

defined as “in bag” data, while the excluded dataset 

(approximately 37 %) is known as the “out-of-bag” data 

(OOB) (Breiman, 1996). For each tree in the ensemble, the 

RF algorithm also calculates the mean square error as the 

difference between predictions (i.e. mean square error) 

made using the OOB data and the “in bag” data, known as 

the OOB error. The OOB estimate of error is considered to 

be a reliable assessment and cross validation of predictive 

accuracy since the OOB data were not used to build or 

prune any regression trees in the ensemble (Breiman, 1996, 

2001; Grimm et al., 2008; Ismail and Mutanga, 2009; 

Prasad et al., 2006). Therefore, it may not be necessary to 

have an independent validating dataset (Lawrence et al., 

2006). Additionally, the OOB data allow for the evaluation 

of the importance of each variable in the prediction by 

determining how much the prediction error would increase 

if the OOB data of that variable were permuted (Prasad et 

al., 2006). The number of trees (ntree) in the forest and the 

randomly selected number of variables tried at each node 

(mtry) have been optimized and selected based on the 

lowest RMSEC (Breiman, 2001). 

 

To validate the performance of the random forest algorithm 

(Lawrence et al., 2006), the data were randomly divided 

into 70 % training or calibration and 30 % test data samples 

(n = 32 and 14 respectively). Regression analyses were 

performed on the calibration dataset using the OOB 

estimates of error. The test data set was used to validate the 

predictive performance of the random forest (Ismail and 

Mutanga, 2009; Lawrence et al., 2006).  

2.3.3. Selection of the predictive variables 

The narrow-band indices NDVIs (n = 160,801) were ranked 

based on the correlation coefficient = r (R2 = coefficient of 

determination). The top 20 NDVIs that yielded the highest 

R2 were then selected for further analysis in order to 

simplify the modelling process (Mutanga and Skidmore, 

2004a).The combination of  random forest and backward 

elimination function was then used to identify the sequence 

in which to discard the least important variables (NDVI) 

(Ismail and Mutanga, 2009).  The backward variable 

selection process iteratively builds multiple random forests 

for regression. At each iteration (n = 20), a new forest was 

developed after gradually eliminating one of the least 

promising narrow-band NDVI and RMSEC was calculated. 

We compared the performance of OOB with both the hold 

out test dataset and the 10 fold cross validation (Ismail and 

Mutanga, 2009). The nested subset of variables (NDVI) 

that yielded the lowest RMSEC was then selected as the 

optimal variable for biomass prediction.  

 

3. RESULTS 

3.1. Hyperspectral indices (NDVI) and biomass 

The results of the correlation coefficients, R2 between the 

entire possible two narrow-band NDVIs (n = 160,801) and 

papyrus fresh biomass are shown in figure 1. The band 

combinations involving the far red edge bands located from 

720 nm to 850 nm range yielded the strongest correlations 

(0.73 to 0.83).  

 
 

Figure 1. The correlation of reflectance indices involving 

all the possible two band combinations and papyrus 

biomass.  

 

The NDVIs were then ranked based on their correlation 

coefficients, and the top 20 two band combinations that 

yielded the highest R2 values were then selected for further 

analysis.  

3.3. Parameters optimization of the random forest 

regression 

The results of optimizing random forest parameters (ntree 

and mtry) are shown in Figure 2. The lowest RMSEC was 

obtained with the default value of mtry and high ntree 

(5500). 
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Figure 2. Optimizing the random forest parameters (mtry 

and ntree) using RMSEP. The black arrow shows the 

lowest RMSEC value 

3.4. Determinations of predictor variables  

Figure 3 shows the results of the variables selection using 

the combination of random forest and backward elimination 

function. Four NDVIs achieved the lowest RMSEC using 

the OOB sample (269 g/m2), 10 fold cross validation (271 

g/m2) and hold out test dataset (276 g/m2). These four 

NDVIs involve a  combination of wavelengths located in 

the NIR (853 nm, 853 nm, 847 nm, and 776 nm) and  

shorter wavelengths of the red edge (741 nm, 740 nm, 741 

nm, and 749 nm) respectively.   

 

 
 

Figure 3. The optimal predictive variables selection using 

the backward elimination process using OOB method, 10 

fold cross validation, and the test dataset). The lowest 

RMSEC obtained is shown by the black arrow 

3.5. Development of the prediction model 

Table 1 shows the RF prediction performance of the best 

selected NDVIs (n = 4) compared to those obtained by the 

standard NDVI calculated from a near infrared (833 nm) 

and red band (680 nm) (Tucker, 1977), the best NDVI 

computed in this study (853 nm and 741 nm), and the top 

20 NDVIs. The R2 values and root mean squared error for 

calibration (n = 32) and test (n = 14) datasets indicate the 

best predictive performance of the RF model obtained when 

using the selected four NDVIs: NDVI (853 nm, 741nm), 

NDVI (853 nm, 740 nm), NDVI (847 nm, 741 nm), and 

NDVI (776 nm, 749 nm).  

 

Table 1. The performance of random forest model for 

prediction of papyrus biomass using different subsets of 

NDVIs 

 

NDVIs

R2 actual

vs.

RMSEC R2 actual

vs.

RMSEP Mean

 Predicted g/m2  predicted g/m %

Standard NDVI

(833nm and 680

nm)

0.026 539 16.7 0.015 694 21.5

Best NDVI (741

nm and 853 nm)

0.72 295 9.2 0.66 306 9.5

Selected NDVIs

(n = 4)

0.77 266 8.2 0.73 276 8.6

      Calibration (n = 33) Independent validation (n = 14)

Mean %

 
 

4. DISCUSSION 

 

The use of remote sensing techniques in estimating biomass 

from dense vegetation or high leaf area index (LAI) such as 

wetland environments has been constrained by the 

asymptotic saturation of vegetation indices such as NDVI 

(Kumar et al., 2001; Mutanga and Skidmore, 2004a; 

Tucker, 1977).  This study showed that papyrus biomass 

can be estimated with high accuracy in areas of high dense 

vegetation using random forest regression algorithm and 

narrow band NDVI calculated from the red edge and NIR 

regions of electromagnetic spectrum.  

4.1. Relationship between the narrow band NDVIs and 

papyrus biomass    

The model developed in this study indicated that 

considerable information on the status of papyrus biomass 

is contained in the red edge and near infrared wavelengths. 

However, the high correlation between AGB and NDVIs 

obtained in this study consisted of narrow band NDVI 

calculated from shorter wavelengths of the near red edge 

portion of the electromagnetic spectrum (700 nm to 750 

nm), and the longer wavelengths of the red edge (750 nm to 

800 nm). This result is consistent with the findings of 

previous studies (Cho et al., 2007; Mutanga and Skidmore, 

2004a).. Additionally, the wavelengths used to develop the 

best NDVIs (n = 20) in this study are within ± 10 nm of the 

known wavelengths that have strong relationships with 

biomass prediction as reported in other studies.  These are 

740 nm, (Cho et al., 2007), 746 nm (Mutanga and 

Skidmore, 2004a), and 775 nm (Kawamura et al., 2008). 

4.3 Variable selection  

It has been noted that the use of the standard NDVI might 

not be able to explore the strength of the large number of 

hyperspectral bands because only two bands from red and 

NIR are used to formulate the NDVI (Mutanga and 

Skidmore, 2004a). In this study, the results of calculating 

the narrow band NDVIs from all possible two band 

combinations between red and NIR and then correlating it 

with AGB (g/m2) improved an understanding of the 

relationship between the wavelength regions and biomass 

estimation at full canopy cover, as well as presenting a 

possibility to explore the rich information content in the 

hyperspectral wavelengths (Mutanga and Skidmore, 

2004a). This study demonstrates the validity and 

significance of NDVI in estimating AGB. However, 

selection of the best wavelengths is an important task to 

formulate the NDVI.  Our results as shown in Figure 1 

explored and ranked all the possible wavelength 
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combinations, then the best combination of wavelengths (n 

= 20) was selected based on the strong correlation with 

AGB for further analysis. Besides ranking and selecting the 

best narrow band combinations (n = 20) that yielded the 

highest correlation with biomass, using random forest with 

backward elimination search function facilitated the 

selection of the fewest most important predictive variables 

(n = 4) for a simple modeling process and best predictive 

accuracy. The consistency of the three methods (OOB, 10 

fold cross validation, and the test dataset) proposed in this 

study to identify the optimal number of the predictive 

variables (n = 4), demonstrates the reliability of OOB as an 

internal estimate of error rate in random forest algorithm. 

Our finding in this regard is identical to those of other 

studies that tested the reliability of OOB estimate error in 

the classification model (Lawrence et al., 2006), and the 

regression model (Ismail and Mutanga, 2009). 

4.4. The predictive performance of random forest model 

Our results from optimizing RF model  supports the 

assertions made in the other studies that the highest 

accuracy and stability of RF can be achieved by using a 

large number of trees (Adam et al., 2009; Díaz-Uriarte and 

de Andrés, 2006) and the default mtry values (Díaz-Uriarte 

and de Andrés, 2006; Grimm et al., 2008).The higher 

accuracy obtained in this study demonstrated the utility of 

random forest algorithm as a feature selection method 

(Adam et al., 2009; Lawrence et al., 2006) and its 

application as a regression model (Ismail and Mutanga, 

2009). The relatively high R2 and low RMSEC and RMSEP 

as shown in Table 1 indicates that the selected NDVIs (n = 

4) improved the predictive performance of the model 

compared to the use of the entire top 20 NDVIs. Our results 

in this regard indicate that the variable selection method 

developed in this study was able to refine the performance 

of RF. The poor predictive performance of standard NDVI 

is consistent with the finding of Cho et al. (2007), involving 

grass/herb in the Majella National Park in Italy, and of 

Mutanga and Skidmore (2004a), involving blue buffalo 

grass (Cenchrus Ciliaris) grown under controlled 

conditions in a greenhouse.  This could be explained by the 

saturation problem of the standard NDVI at the high 

biomass or leaf area index which has been reported in 

several studies (Mutanga and Skidmore, 2004a; Tucker, 

1977). 

  Overall, this study has revealed that it is possible to 

predict dense papyrus biomass at canopy level using filed 

spectrometry measurements. Additionally, the developed 

model provides a better understanding of (i) those narrow 

band regions that are most sensitive for papyrus biomass 

estimation and (ii) the potential of random forest ensemble 

as a feature selection and regression type model in remote 

sensing applications. This permits the up scaling of the 

model to spaceborne or airborne sensors such as HYMAP 

and Hyperion  
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