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Abstract: This study assesses the contribution of LIDAR 

altimetry, multi-return and intensity information, and 

aerial photos to coastal wetland investigation. Aerial photos 

in this area work as reference data to assess the accuracy of 

the experiment. The performance of Lidar data resources 

was tested alone with the adaptive TIN algorithms to 

separate ground points. Multi-return information was 

employed to conduct vegetation extraction as Lidar can 

penetrate canopy and reach the ground. Intensity is also 

used to assist classification due to its variability on different 

objects. The result demonstrated that LIDAR can work as a 

fast and robust mean for detailed mapping of coastal 

wetland underlying terrain, investigation of the vegetation, 

and exploration of coastal area with different moisture. It 

provides more reliability in wetland mapping and 

classification compared with remote sensing images alone.  

Key words: LiDAR, coastal wetland, multi-return, intensity, 

classification. 

1. INTRODUCTION 

The Yellow River is the birthplace of ancient Chinese culture 

and the cradle of Chinese Civilization. Due to the great amount 

of sand and mud deposited, the well-known Yellow River Delta 

(YRD) region was formed during the past thousands of years 

and it is still extending to the sea continuously. YRD owns the 

youngest, vastest and most complete wetlands ecosystem of 

warm temperate zone in the world. It also offers a wonderful 

place for transferring, wintering and inhabiting for many birds 

from northeast of Asian and west of Pacific Ocean. The YR 

wetland is more complicated than inland wetland, because it is 

affected by the sea, river and land simultaneously. YRD region 

is an ecologically and physically diverse place and provides a 

natural laboratory for researches in different disciplines. 

Ecologists take this area as a base to study the form, 

evolvement and development of newly created land; biologists 

take it as a gene pool to research the law for organism 

derivation and succession; climate protectors take it as a mirror 

to reflect the improving results of the YR. 

To protect the fragile ecosystem and prevent further loss of 

wetland, many researchers paid attention to inventorying and 

monitoring wetlands. Satellite remote sensing is a commonly 

used method. Satellite images for the same area can be 

collected repeatedly so that wetlands can be monitored 

seasonally or yearly. It is also less cost and time-consuming in 

land cover classification than using aerial photography for large 

geographic areas. In some early work, Yue (2003) conducted 

supervised classification by integrating Landsat TM images of 

the newly created wetland in the YRD in the four seasons of 

each year to detect the landscape change. Xu (2003) studied the 

characteristics of wetland landscape changes by the remote 

sensing images acquired in 1976, 1986 and 1996 separately. Li 

(2007) combined remote sensing and Geographic Information 

System technology to study the YR wetland changes. However, 

limitations are existed for ecological applications in 

conventional sensors. The sensitivity and accuracy of the 

sensors can’t produce accuracy estimation of aboveground 

biomass and leaf area index (Waring et al. 1995, Carlson et al. 

1997, Turner et al. 1999). The resolution of satellite images is 

too coarse to extract detail information. They are also limited in 

their ability to represent the spatial patterns. However, LiDAR 

can directly measure the distance between the targets and 

platform. It provides 3D information on the target, which 

enables the estimation of many ecological variables, such as 

canopy height, above ground biomass. The purpose of this 

study is to assess the contribution of LIDAR altimetry, multi-

return and intensity information, and aerial photos to coastal 

wetland investigation. 

2. STUDY SITE 

2.1 Study site description 

Due to the huge dataset of the whole area, two blocks of the 

YRD wetland with size of 750m*750m were chosen as study 

area to conduct wetland investigation. Block 1 locates on the 

inland of coastal wetland and consists mainly of high 

vegetation, such as mangrove forest, while block 2 locates near 

the sea and is full of tidal channels and low vegetation, such as 

reeds.  Figure 1 shows the location of YRD. Figure 2 shows the 

ortho images of these two study sites. 

 

 

Figure 1 Location of newly created wetland of YRD (Yue, 

2003)  

 

  

Figure 2 Ortho images of two test sites 

 

2.2 Data acquisition  

The LiDAR data employed in this study was collected in Aprial 

2008 using ALS50. It can collect multi-return, and intensity can 

also be recorded at the same time. To cover the whole area of 

YRD wetland, 10 strips of data sets were collected, which 

covers an area of 670km2. Each data set contains several 

variables: 3D coordinates, intensity, flight line, echo number 

and time stamp. Aerial cameras were also employed to collect 



aerial images simultaneously. Table 1 detailes the specifications 

of sensor at the time of data acquisition.  

Table 1 LiDAR data and aerial image acquisition specifications 

LiDAR system ALS50 

Flying height 2400m 

Field of View 62.4° 

Scan rate 14.6 

Pulse rate 30.2KHz 

Average point distance 2.5m 

Horizontal accuracy 20~30cm 

Vertical accuracy 7~15cm 

Aerial image resolution 1m 

Bands of aerial images Red, Green, Blue 

  

3. METHODOLOGY 

This section describes the research methods used for this study. 

The overall proposed methodologies are shown in Figure 3. 

Firstly, the datasets collected from GPS, IMU and laser scanner 

were integrated by GrafNav and IPAS Pro software to generate 

point cloud. Since error points exist, error removal algorithms 

were employed to remove the error points.   

 

 

Figure 3 Proposed methodology 

 

3.1 Error removal 

Prior to undertaking spatial analysis of the LiDAR data, the 

main task is to classify the collected data points into different 

categories according to the user’s requirements. The first step 

of this processing is to detect and to remove outliers from the 

point cloud. In this study, outliers are divided into two parts: 

low points and isolated points. Low point classification routines 

identify points which are significantly lower than other 

surrounding points. The objective is to remove those erroneous 

points which are clearly below the local ground. The method 

used compares the elevation of each point (the center point) 

with every other point within a given distance. If the center 

point is significantly lower than surrounding points, it will be 

classified as an outlier. The algorithm used is presented in 

equation (1) 
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the average elevation in the window, h  is the threshold for low 

point detection. 

Besides low points, there are many isolated points that can be 

regarded as erroneous points, such as temporal objects up in the 

air. An isolated point classification routine is needed to classify 

such erroneous points. Isolated points are points which do not 

have many neighbors within a 3D search radius. Within a given 

3D search radius, the isolated points can be identified by 

equation (2). 
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where ),,( iii zyx is the neighbour of point ),,( ppp zyx , N is 

the number of the neighbours in the circle, H is the threshold 

for the number of neighbours in a given radius R.  

3.2 Ground point classification 

The Adaptive Triangulated Irregular Network (ATIN) method 

(Axelsson, 2000) was employed in this study. The ATIN 

method classifies ground points by iteratively constructing a 

triangulated surface model. Firstly, the data set is divided into 

blocks whose size is determined by the largest structure in the 

area to make sure that all the structures (i.e. buildings and 

vegetation) can be filtered out. If the block size is smaller than 

the largest structure, the selected local low points may be on the 

structure rather than on the ground and will lead to 

misclassification. The classification starts by selecting some 

local low points which belong to the ground in each block. 

Then, an initial TIN is formed from the local lowest points. The 

last step is molding the model upwards by iteratively adding 

new points to it thereby densifying the TIN. The iterative 

process determines how close a new point need to be to the 

plane defined by currently included points in order to be 

accepted into the model. 

Figure 4 shows the densification process of this method. The 

four black dots represent the classified initial ground points 

after the initial TIN generation. The circle represents a point 

that needs to be classified. For each candidate point (the circle), 

two parameters were calculated to judge whether it is a ground 

point or not. One is the angle subtended at the nearest TIN 

vertex. The other is the perpendicular distance from the new 

point to the plane. If the thresholds are met, the candidate will 

be added into the TIN. Otherwise, the candidate will be 

classified as a non-ground point which need to be further 

classified. The iteration process will terminate when all the 

candidates are processed and no new points can be added to the 

TIN. Based on the project data the thresholds were 10°and 1.5 

m respectively.  

 

Figure 4 TIN densification process 

 



3.3 Interpolation 

After the ground points were classified, the points need to be 

transformed into a gridded form as this makes additional data 

processing more straightforward. In view of the high resolution 

of LiDAR data, a 3 m grid spacing was selected for the YRD 

data. Kriging (Stein, 1999) was used for the gridding. The 

remaining unclassified points belonged to vegetation or 

manmade features (i.e. buildings).   

4. RESULTS AND DISCUSSION  

Digital Surface Model (DSM) was generated with all the points 

came from the first return. Figure 5 shows the DSM 

interpolated by LiDAR point clouds with spacing of 3m. Due to 

the high resolution of this DSM, the topography can be 

explored with great detail. The road, tidal channels and 

vegetation can be mapped. As the geometric characteristics of 

LiDAR, height information of study sites can be obtained. 

Block 1 is dominated by high mangrove forest with average 

height of 9m. Block 2 is covered by reed with average height of 

1.5m. By applying the classification method, LiDAR point 

clouds are divided into ground points and non ground points. 

Figure 5 shows the classified ground class. Compared with 

DSM, all the vegetations are removed successfully. This is 

difficult to achieve by using remote sensing images. 

 

 

Figure 5 a) DSM of Site 1, b) DSM of Site 2, 

               c) DEM of Site 1, d) DEM of Site 2 

 

4.1 Vegetation extraction  

Vegetation plays an important part in protecting coastal areas 

from erosion, storm surge and tsunamis. Identifying the 

locations of costal vegetations can benefit costal wetland 

management. Two methods were used to extract the vegetation. 

One is based on the normalized DSM. As the study area is 

covered with only mangrove forest, and no man-made features 

located in. The classified non-ground points are regarded as 

vegetation points. It can be generated by subtracting DTM from 

DSM. Figure 6 a) and b) shows the normalized DSM of Site 1 

and 2 which representing the vegetation distribution. The other 

one is based on multi-return information, which is an unique 

characteristic of LiDAR technology. As LiDAR pulse can 

penetrate the canopy and reach the ground, multi-return 

information can be employed to conduct vegetation extraction. 

All the pulses having multi-returns are regarded as vegetation 

points. Figure 6 c) and d) shows the vegetation location where 

have multi-returns. It is obviously that not all the vegetation can 

be penetrated by the pulse. The extracted vegetation is much 

less than the actual vegetation. But it can demonstrate the 

general distribution of the vegetation. The vegetation 

penetration ratio of LiDAR can be acquired by comparing the 

number of vegetation points from these two methods, which is 

18.8% and 4.4% respectively. 

 

 

Figure 6 a) & b)Vegetation of Site 1 and Site 2 based on 

normalized DSM, c) & d) Vegetation of Site 1 and Site 2 based 

on multi return. 

 

4.2 Statistical results 

After the extraction of vegetation, we make a statistics about 

the extracted points. Figure 7 shows the height distribution of 

extracted vegetation points from only return and multi-returns. 

  

Figure 7 Height distribution of veg-points for Site 1 and Site 2. 

The results demonstrate that inland wetland vegetations are 

large vegetation with average height of 5 m. While in wetland 

near the sea, low vegetations are the dominant plant. Moreover, 

we found that multi-return are apt to be acquired with 

vegetation higher than 5m in site 1. While in site 2 only small 

parts of vegetation were successfully extracted. The penetration 

ratio of LiDAR for site 1 and site 2 are 35% and 14.8% 

respectively. 

4.3 Intensity 

The intensity of the reflectance to laser beam varies on different 

objectives. The light LiDAR system emits is infrared which is 

sensitive to moisture. Figure 8 shows the intensity map of 

LiDAR. We can find that vegetation is difficult to discriminate 

from the intensity map. However, it is sensitive to targets with 

different moisture. The tidal channel, water region can be 

discriminate clearly. Here, supervised classification was 

employed to classify the ground into different classes with 

various moisture contents. Training samples were selected from 

aerial photo which has high resolution, and the corresponding 

intensity was sampled from intensity map. So, three classes 

were defined which were open water with intensity smaller than 



30, wet ground with intensity between 30 and 150 and dry 

ground with intensity larger than 150. 

 

Figure 8 a) Intensity map of Site 1, b) Intensity map of Site 2 

 

4.4 Classification results 

As LiDAR can provide geometric, intensity and multi-return 

information, each of them has predominance in identifying a 

specific objective. Four classes were defined in this study area, 

which including open water, mudflat, dry land and vegetation. 

The open water has low reflectance and bare dry land has 

strong reflectance on intensity map. Vegetation is obviously 

according to the multi-return information and normalized DSM 

as this study area is very flat. Samples were taken from the 

images by manual process. Based on the extracted samples, 

several thresholds were defined for conducting classification. 

The thresholds contain the range of intensity, height and multi-

return information. Figure 9 shows the classification maps for 

block 1 and 2. Green color represents extracted vegetation; 

yellow represents dry land; red represents mudflat; and blue 

color represents open water.  

 

 

Figure 9 Classification result of Site 1 and 2 

 

For each block, 160 points with known class are sampled as 

checking points from the aerial image to evaluate the accuracy 

of classification. For each class, 40 checking points were 

selected. The results show that the total classification can reach 

88% and 84% for site 1 and site 2 separately. In vegetation 

class, the classification accuracy is high. It can attribute to 

LiDAR’s geometric characteristics. 

Table 1 Accuracy result of Site 1 

Actual classes 

Site 1 

Water Mudflat 
Dry 

ground 
Vegetation 

Water 37 6 2 0 

Mudflat 3 30 4 0 

Dry ground 0 4 34 0 

P
red

icted
 classes Vegetation 0 0 0 40 

Table 2 Accuracy result of Site 2 

Actual classes 

Site 2 

Water Mudflat 
Dry 

ground 
Vegetation 

Water 35 4 1 0 

Mudflat 5 28 5 1 

Dry ground 0 8 34 1 

P
red

icted
 classes Vegetation 0 0 0 38 

 

5. CONCLUSION  

LiDAR technology emerged as a robust tool for many 

applications. It offers a potential alternative to field surveying 

and remote sensing technology. This paper chose the Yellow 

River Delta, which has typical coastal wetland in China, as a 

study area and employs LiDAR as a robust method to conduct 

the wetland investigation. The experiment result reveals that 1) 

LiDAR has prominent ability in detailed and precise mapping 

compared with traditional technology. 2) The penetration 

characteristic allows the extraction of the underneath terrain 

details and the vegetation. The multi-return can also be used for 

vegetation extraction, but it just demonstrates the distribution of 

vegetation, not all the vegetation can be detected. 3) Intensity 

data is susceptible to target with various moisture content. Open 

water and bare ground can be detected from intensity map. 4) 

The combination of these attributes makes contribution to 

wetland classification. The classification result can reach 88% 

and 84% respectively. 
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