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Abstract: Remote sensing information is critical to preserve 

environments in tropical and mountain regions (e.g., costal 

hurricane mitigation or mountain forest management). In 

order to partition graphical information into meaningful 

regions and extract salient objects, segmentation is used to 

identify visual signatures based on similarity criteria. Due 

to atmospheric dispersing, nonlinear denoising is needed to 

capture intrinsic information. To identify illustrious objects 

and regions, image segmentation using K-Means clustering 

is generally applied to partition information into diverse 

clusters. Since each pixel might have certain degree of 

belongings to multiple clusters, fuzzy K-Means clustering is 

introduced to depict belongings using fuzzy membership 

functions, which classifies pixels into two or more clusters. 

Without general rules to determine an optimal number, the 

key problem is to specify the desired number of clusters. 

Quantitative measures are also proposed to identify the 

actual number of clusters to enhance decision support 

accuracy and optimize K-Means clustering. 
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1. INTRODUCTION 

 

Spatial image segmentation is one of leading approaches for 

automated object recognition in remote sensing. It has various 

applications on weather forecasting and target detection [1-4]. 

Since remote sensing data are affected by atmospheric 

dispersions, denoising techniques should be used to eliminate 

noise and preserve true information [5-6]. Diverse segmentation 

methodologies have been proposed. In some cases, artificial 

intelligence is introduced. Clustering using swarm algorithms is 

an alternative to hierarchical and K-Means clustering. Particle 

Swarm Optimization (PSO) clustering performs a global search 

for the corrupt images due to occlusions. It generates compact 

clustering results [7]. PSO can also be used to implement mixel 

decomposition. It combines with linear mixels decomposition 

model. Mixel decomposition of the remote sensing images is to 

improve qualities of feature extraction like distortion in linear 

mixel decomposition. It presents robustness to environment [8]. 

Ant colony optimization (ACO) based clustering provides 

improvement in clustering the 3D data with the higher density 

and complexity. By hybridization of its foraging behavior and 

K-Means, the quality and processing time become much better 

than other techniques [9]. ACO can also be used to solve 

complex remote sensing classification. It takes into account 

data correlation between the attribute variables. Discretization 

technique is incorporated so that classification rules can be 

induced from large data sets of remote-sensing images. It yields 

better accuracy than decision tree methods [10]. A supervised 

classification technique for hyperspectral imagery is utilized as 

a feature extractor to generate a particular feature eigenspace 

for each class presented in hyperspectral data. It consists of 

both the greedy modular eigenspace and positive Boolean 

function. Compared to principal components analysis (PCA), it 

significantly increases the accuracy and dramatically improves 

the decomposition computational complexity [11]. 

Taking into account of the computational complexity and 

uncertain nature of remote sensing, as an unsupervised 

clustering technique, K-Means clustering is still among the 

most applicable approaches. It is to classify an image into parts 

that have a strong correlation with objects to reflect the actual 

information collected in real world. In practice, there is no 

distinct boundary between clusters, thus fuzzy K-Means 

clustering can be further proposed for data analysis. Fuzzy 

membership functions are used to describe the degrees of 

belonging to clusters. The fuzzy membership function is 

dependent on the distance between the image pixel and those 

independent cluster centroids. Fuzzy partitioning is carried out 

through iterative optimizing a well defined cost function. The 

iteration continues until the cost function converges to the 

minima. K-Means clustering requires that certain number of 

clusters for partitioning be specified and its distance metrics be 

proposed to quantify relative orientation of objects. The optimal 

algorithms can be categorized as threshold based, region based, 

edge based or surface based. How to choose a number of 

clusters will directly affect the overall outcome of segmentation 

[12-16]. This article is dealt with the impact of “number of 

clusters” on remote sensing data processing. Besides the 

decision making via visual appealing, quantitative metrics are 

also introduced to evaluate the outcomes of spatial image 

segmentation using fuzzy K-Means clustering [4, 12, 17]. 

 

2. DISCRETE WAVELET TRANSFORM DENOISING  

 

Discrete wavelet transform is introduced for noise filtering of 

spatial digital images. It is a multiple level transformation. The 

decomposition outputs at each level include: approximation, 

horizontal detail, vertical detail and diagonal detail. The detail 

components will be retained and approximation component can 

be further decomposed into multiple levels. For denoising using 

DWT, wavelet coefficients of detail components are subject to 

thresholding, while the approximation component at each level 

would be retained for image reconstruction. Soft thresholding is 

selected instead which shrinks nonzero wavelet coefficients 

towards zero. In general a small threshold produces a fine but 

noisy estimation while a large threshold produces a smooth but 

blurring one. The median value at each decomposition level is 

selected. Using DWT, two resulting denoising images taken 

from the tropical area and mountain region are shown in Fig. 1 

and Fig, 2, respectively. 

 

  
Figs.1-2 Denoised Images of Gulf Area and Mountain Region 

 

3. NONLINEAR FUZZY K-MEANS SEGMENTATION  

 

K-Means clustering classifies data sets through K numbers of 

clusters, where each data point inside will be assigned to certain 

location. In fuzzy K-Means clustering, instead of belonging to 

one cluster exclusively, an individual point can belong to more 

than one cluster with certain probability (degree of belonging). 

Points along borders between the clusters would have lesser 



 
degree of belonging than those points around centroids. Each 

point x has a degree of belonging to a cluster. The sum of the 

degrees of belonging for any individual point is defined to be 1. 
K

i=1 i
µ (x)=1∑     (1) 

In fuzzy K-Means clustering, the centroid of a cluster is the 

mean of all points, weighted by the fuzzy membership. The 

degree of belonging is related to the inverse of the distance 

metric to the cluster centroid. It is then normalized and 

fuzzified with the specified parameter m > 1.   
K Km m
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Fuzzy K-Means clustering optimizes the cluster centroid by 
iteratively adjusting positions and evaluating a defined cost 
function. The cost function can be formulated as: 

K N m j 2

ij i jj=1 i=1
F= µ ||x - c ||∑ ∑    (4) 

where µij is the fuzzy membership of a point xi in a cluster j, xi 
is the ith element of N-dimensional data set, cj is the j-

dimension centroid of the clusters, and m is a constant that 
defines the fuzziness of segmentation outcomes. F can reach the 
global minimum when points around centroids are assigned 
bigger membership values, while those points far away from 

centroids are assigned with smaller membership values. This 
procedure is continued until optimal object assignment for all 
clusters is reached. With fuzzy K-Means, any cluster centroid is 
the statistical mean of all points, weighted by the degree of 
belonging to clusters (fuzzy memberships). However, the 

ultimately generated cluster assignment highly depends on the 
initial number of clusters and initial cluster assignments. 
Especially, results are very sensitive to the actual choice of the 
cluster number. In this case, further analysis needs to be 

conducted to determine the desired number of clusters to 
optimize the segmentation process. There is no distinct rule to 
follow how to come up with the best number of clusters. In this 
case, this article intends to study the impact of the number of 

clusters from both subjective and objective points of view.   
 

4. FUZZY SEGMENTATION WITH K CENTERS 

 

Segmentation of remote sensing data requires the number of 
clusters should be specified for partitioning, while the centroid 
of each cluster must also be defined initially, representing mean 
values of all data points with fuzzy membership functions for 

that cluster. In this section, two denoised spatial images are 
both selected for segmentation. Fuzzy K-Means clustering is 
implemented and the number of clusters is assigned to be from 
2 to 16 to make suitable comparisons for each selection, 

respectively. The clustering outcomes are shown in Figs 3-11, 
respectively, where spatial images of Mississippi-Gulf area are 
placed to the left and spatial images of US-CA mountain region 
are placed to the right. From cases with 2 clusters to 6 or 7 

clusters, visual appealing does improve dramatically. Beyond 7 
clusters until 16 clusters, visual appealing does not illustrate 
significant improvement, though. 

  
Fig. 3 Segmentation Using 2-Means Fuzzy Clustering 

  
Fig. 4 Segmentation Using 3-Means Fuzzy Clustering 

  
Fig. 5 Segmentation Using 4-Means Fuzzy Clustering 

  
Fig. 6 Segmentation Using 5-Means Fuzzy Clustering 

  
Fig. 7 Segmentation Using 6-Means Fuzzy Clustering 

 

  
Fig. 8 Segmentation Using 7-Means Fuzzy Clustering  

 

  
Fig. 9 Segmentation Using 8-Means Fuzzy Clustering 

  
Fig. 10 Segmentation Using 10-Means Fuzzy Clustering 

  
Fig. 11 Segmentation Using 16-Means Fuzzy Clustering 

 
 



 
5. QUANTITATIVE ANALYSIS 

 
Subjective evaluation is conducted. In this section, objective 

evaluation will also be made. All digital images with M × N 
pixels have been considered. Occurrence of the gray level is 
described as co-occurrence matrix of relative frequencies. The 
occurrence probability is then estimated from its histogram. All 

these quantitative measures will be applied for fuzzy K-Means 
clustering evaluation.  

5.1 Discrete Entropy 

The discrete entropy is a measure of information content, which 

can be interpreted as the average uncertainty of the information 
source. The discrete entropy is the summation of products of 
the probability of the outcome multiplied by the logarithm of 
the inverse of probability of the outcome, taking into 

considerations of all possible outcomes {1, 2, …, n} as the gray 
level in the event {x1, x2, …, xn}, where p(i) is the probability 
at the level i, which contains all the histogram counts (5).  

k k

2 2

i=1 i=1

1
H(x)= p(i)log = - p(i)log p(i)

p(i)
∑ ∑

   (5) 

5.2 Discrete Energy  

The discrete energy measure indicates how the gray level 

elements are distributed. Its formulation is shown in (6), where 
E(x) represents the discrete energy with 256 bins and p(i) refers 
to the probability distribution functions at different gray levels, 
which contains the histogram counts. For a constant value of 

the gray level, the energy measure reaches its maximum value 
of one. The larger energy is corresponding to a lower gray level 
number and the smaller one is corresponding to a higher gray 
level number.  

 k
2

i=1

E(x)= p(i)∑
     (6) 

5.3 Correlation 

Correlation is a standard measure of image contrast to analyze 

linear dependency on the gray levels of neighboring pixels. It 
indicates the amount of local variations across the gray level 
image. The higher the contrast is, the sharper the structural 
variation is. This measure is formulated as (7): 

M-1 N-1
i j

i=0 j=0 i j

(i-µ )(j-µ )
COR = g(i,j)

σ σ
∑∑

    (7) 

where i and j are coordinates of the co-occurrence matrix; M 
and N represent total numbers of pixels in row and column of 
the digital image; g(i, j) is the element in the co-occurrence 

matrix at the coordinates i and j. µi,j and σi,j are the horizontal 
means and variances, respectively. 

5.4 Dissimilarity 

The dissimilarity between two gray level images is regarded as 

the distance between two sets of co-occurrence matrix 
representations. It is based on the local distance representation, 
which is formulated as (8):  

M-1 N-1

i=0 j=0

DisSim= g(i,j) |i-j|∑∑
    (8) 

where g(i, j) is an element in the co-occurrence matrix at the 

coordinates i and j; M and N represent total numbers of pixels 
in the row and column of the digital image. 

5.5 Homogeneity  

This measure is a direct measure of the local homogeneity of a 

gray level image, which relates inversely to the image contrast. 
Higher values of homogeneity measures indicate less structural 
variations and lower values indicate more structural variations. 
Larger values are corresponding to higher homogeneity and 

smaller values are corresponding to lower homogeneity. It is 
formulated as (9): 

M-1 N-1

2
i=0 j=0

1
Homogeneity= g(i,j)

1+(i-j)
∑∑

   (9) 

 

5.6 Mutual Information 

Another metric of the mutual information I(X; Y) can also be 
applied, which is employed to describe how much information 

one variable tells about the other variable. The relationship is 
formulated as (10). 

XY
XY 2

X,Y X Y

p (X, Y)
I(X;Y)= p (X, Y)log

p (X)p (Y)
∑

              (10) 

where H(X) and H(X|Y) are values of the entropy and 
conditional entropy; pXY is the joint probability density 

function; pX and pY are marginal probability density functions. 
It can be explained as information that Y can tell about X is the 
reduction in uncertainty of X due to the existence of Y.  
 

6. NUMERICAL SIMULATIONS 

 
Using a set of well defined information metrics, all computation 
results of two segmented spatial images across diverse numbers 

of clusters are documented, which are shown in Table 1 and 
Table 2, respectively. Two sets of simulation results are also 
plotted in Figs. 12-13. It is indicated again (Tables 1-2 and 
Figs. 12-13) that the cases with 6 or 7 clusters are the most 

desirable choice for fuzzy K-Means clustering. Additional 
number of clusters will increase computational cost, however, 
values of quantitative metrics vary very little.  
 

Table 1 Quantitative Metrics of Lake View 
Clustering # 

Metrics 
K=2 K=3 K=4 K=5 K=6 

Discrete 

Entropy 2.7530 4.9148 5.8619 6.3566 6.7467 

Discrete 

Energy 0.3535 0.0944 0.0450 0.0352 0.0299 

Correlation 0.7624 0.6347 0.6700 0.5446 0.6119 

Dissimilarity 0.8534 1.1375 0.9862 1.3426 1.0331 

Homogeneity 0.8699 0.7576 0.7512 0.6566 0.6749 

Mutual 

Information 4.4353 2.2736 1.3264 0.8317 0.4417 

Clustering # 

Metrics K=7 K=8 K=9 K=10 K=16 

Discrete 

Entropy 7.0030 7.1477 7.3633 7.4560 7.6877 

Discrete 

Energy 0.0238 0.0172 0.0156 0.0138 0.0058 

Correlation 0.6481 0.5133 0.5860 0.4135 0.2422 

Dissimilarity 1.0721 1.4108 1.3043 1.6335 1.5946 

Homogeneity 0.6660 0.6135 0.5943 0.5706 0.5286 

Mutual 

Information 0.1853 0.0406 0.0375 0.0267 0.0149 

 
Table 2 Quantitative Metrics of Mountain View 

Clustering # 

Metrics 
K=2 K=3 K=4 K=5 K=6 

Discrete 

Entropy 3.1045 4.6158 5.6773 6.1570 6.7621 

Discrete 

Energy 0.2553 0.1141 0.0584 0.0421 0.0239 

Correlation 0.7852 0.6881 0.7545 0.5392 0.6908 

Dissimilarity 0.6157 0.9665 0.7962 1.4507 1.1150 

Homogeneity 0.9043 0.7546 0.7810 0.6473 0.6689 

Mutual 

Information 3.8486 2.3373 1.2758 0.7960 0.1909 

Clustering # 

Metrics K=7 K=8 K=9 K=10 K=16 



 
Discrete 

Entropy 6.8877 7.0718 7.3280 7.3533 7.6193 

Discrete 

Energy 0.0204 0.0193 0.0139 0.0141 0.0078 

Correlation 0.5033 0.7062 0.4950 0.5496 0.4740 

Dissimilarity 1.3846 1.0979 1.3962 1.4183 1.0121 

Homogeneity 0.6257 0.6452 0.5743 0.5872 0.6430 

Mutual 

Information 0.0653 0.0626 0.0400 0.0375 0.0118 
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Fig. 12 Metrics of Lake View Fuzzy Clustering (K=2-16) 
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Fig. 13 Metrics of Mountain View Fuzzy Clustering (K=2-16) 

 
 

7. CONCLUSIONS 

 

Nonlinear fuzzy K-Means segmentation has been presented to 
enhance spatial information retrieval. To reduce blurring effects 
stem from the atmospheric media, 2D wavelet denoising is 
employed without distorting key features. As an enhanced 

unsupervised learning approach, fuzzy K-Means clustering has 
potential to simplify computation complexity and accelerate the 
convergence. Fuzzy K-Means clustering also serves as a 
statistical algorithm, where soft clusters with degrees of belong 

(fuzzy membership functions) are applied rather than hard 
clusters with a distinct set of points in conventional K-Means 
clustering. Determination of actual number of clusters is a trial 
and error procedure where no rule can be followed. It turns out 

to be the shortcoming of K-Means algorithms. This research is 
to seek for the most desirable number of clusters on the 
segmentation outcomes using fuzzy K-Means clustering. Both 
qualitative observation and quantitative evaluation are 
conducted, where a convincing set of quantitative information 

metrics (discrete entropy, energy, correlation, dissimilarity, 
homogeneity and mutual information) are applied to depict the 
impact of the actual cluster number on segmentation results. 
Based on outcomes, the ideal number of clusters is indicated. 
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