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Abstract- One non destructive method of biomass 

quantization involves exploiting biophysical parameters of 

trees such as diameter at breast height (DBH), height, basal 

area, volume and stocking. Generally, these parameters are 

estimated through model functions or algorithms which 

transform a set of remote sensing observations into 

biophysical measurements. Several studies have investigated 

the estimation of biomass parameters using low to high 

resolution optical digital images, but few studies have 

compared the performances of different advanced 

classification methods for estimating biomass variables.  In 

this study, biophysical parameters including basal area, 

volume and stocking are estimated using different textural 

attributes calculated from SPOT 5 images over a Pinus 

radiata plantation in Australia. Two different neural 

networks including multilayer perceptron (MLP) with three 

different activation functions and radial basis function 

(RBF) neural networks are applied to analyze the 

relationship between the plot level biophysical information 

and the remotely sensed data. The results showed the 

capability of SPOT-5 data for use for biophysical 

parameters of Pinus radiata forest especially when MLP 

method is used.  
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1. INTRODUCTION 

In recent decades, different remote sensing sensor data have 

been investigated for the quantization of biomass parameters 

including DBH, height, basal area, volume, stocking, etc. 

Several of these studies  have analyzed and estimated  biomass 

parameter using low to high resolution optical digital images 

such as MODIS, SPOT, Landsat and IKONOS (Makela and 

Pekkarinen, 2004; Lu, 2005; Sivanpillai et al., 2006; Kayitakire 

et al., 2006; Nelson et al., 2009; Wolter et al., 2009). These 

studies can be grouped in two classes; those that investigated 

the relationship between reflectance and spectral content of 

optical images and stand variables and those that focused on the 

advantages of using textural information derived from optical 

images to model and analyze forest structure. While several 

vegetation indices have been developed the most common one 

is normalize difference vegetation index or NDVI (Foody et al., 

2001). Several studies have demonstrated the limitations of 

utilizing space borne spectral information for estimating stand 

volume, even over pine forests (Trotter et al., 1997; Kilpelainen 

and Tokola, 1999). Foody et al. (2001) suggested that 

vegetation indices are not reliable for quantizing biomass 

variables due to the following problems: (i) the asymptotic 

relationship between vegetation indices and biomass can lead to 

inaccurate evaluation of high biomass forests; (ii) the 

radiometric calibration of remotely sensed data is applicable to 

radiance and not indices; (iii) the vegetation indices are 

environmentally dependent; and (iv) they often do not utilize all 

spectral data together. 

Texture characterizes the spatial relationship between objects 

and varies with the spatial variability of image tone (Wulder et 

al., 1998). Since, spatial variation over a forest area is related to 

the spatial distribution of individual stands and their structures, 

textural information carries a wealth of information about stand 

structure. Several studies have shown that the textural analysis 

of remote sensing images can provide significant information in 

forest inventories (Ryherd and Woodcock, 1996; Hyyppa et al., 

2000). Even, in heterogeneous stands, e.g. mixed-wood stands, 

textural attributes can provide more information than spectral 

data (Wulder, 1998). There are various methods that can be 

implemented to find the relationship between forest structure 

variables such as height, volume, DBH, basal area, crown 

closure, crown diameter, and textural information in digital 

images. Common methods include Semi-variogram, object-

based methods, and Gray level Co-occurrence Matrix (GLCM). 

Using semi-variogram operationally in large scale applications 

is limited for two reasons: (i) data generated through this 

method can be too large and consequently difficult to manage 

(Kayitakire et al., 2006) and (ii) when analyzing inter-stand 

structure, it is necessary to construct separate semi-variograms 

for each stand and this can also be impractical (Cohen et al., 

1990).  

GLCM can be considered as a reliable method to find the 

relationship between biomass variables and remote sensing data. 

The most relevant textural features for remote sensing 

applications, according to the literature (Baraldi and 

Parmiggiani, 1995; Solberg, 1999; Lu, 2005; Tuominen and 

Pekkarinen, 2005; Kayitakire et al., 2006), are presented in table 

A. According to these studies, physical characteristics of 

objects, environmental conditions at the time of data 

acquisition, forest characteristics, spatial resolution and spectral 

characteristics of image and window size, are the most 

important parameters to determine the suitability of a textural 

feature for biomass classification or stand variables 

quantization.  

However, some studies have used different methods such as 

regression and multiple regression models, neural network, 

classification methods and empirical methods to define the 

relationship between optical data and different biomass 

parameters in forest mapping (Hyyppa et al., 2000; Gemmell et 

al., 2001; Cohen et al., 2003; Ingram et al., 2005; Labrecque et 

al., 2006; Luther et al., 2006). Among these methods, neural 

networks have the capacity to build reliable regression models 

between optical data and vegetation variables provided enough 

training data is available (Kimes et al., 1998). There are 
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different types of neural networks which can be applied in 

biomass variable estimation such as MLP and RBF (Foody et 

al., 2001).        

Table A. Most Relevant Textural Features for Remote Sensing 

Applications 

Textural feature Equation 

Mean (ME) 
 

Dissimilarity (DISS) 

 

Entropy (EN) 
 

Variance (VAR, σ2) 
 

Angular Second Moment 

(ASM) 
 

Correlation (COR) 
 

Contrast (CON) 
 

Homogeneity (HOM) 
 

Where Ng is the number of gray levels, and p (i,j) represents the 
probability of  co-occurrence of gray levels i and j. 

Hyyppa et al. (2000) compared the value of various spectral 

data derived from different sources including SPOT Pan, SPOT 

XS and Landsat TM to estimate stem volume, mean tree height 

and basal area using regression and neural network models. The 

results showed better accuracy is derived for higher spatial 

resolution data using a neural network model. Moreover, the 

best estimation of the error of stand mean height using optical 

data was more than 30% of measured mean height whereas 

estimations of stem volume and basal area parameters were not 

reliable, especially using space borne data. Foody et al. (2001) 

compared three different types of neural networks including 

MLP, RBF and generalized regression neural networks (GRNN) 

to estimate biomass using spectral attributes of TM data. MLP 

was shown to be the best method with a correlation coefficient 

between test data and biomass of 0.64 compared to 0.21 for 

NDVI.  

This study aims to investigate the relationship between GLCM 

in different window sizes and three biomass variables including 

basal area, volume and stocking. Moreover, different types of 

neural network methods were also evaluated for all biomass 

variables. 

2. STUDY AREA AND DATA 

The study area contained a 5,000ha Pinus radiata plantation 

near to the town of Batlow in New South Wales, Australia. 

Field data from 63 plots (measured by by the New South Wales 

Department of Industry and Investment (IINSW) and Forests 

NSW in September 2008) included DBH and height 

measurements for each tree. After buffering these plots with a 

30m radius it became evident that some plots contained road 

edge effects or incorporate mixed age classes and consequently 

21 plots were removed from the field dataset for the rest of 

study. Basal area, volume and stocking were calculated per 

hectare for each plot. Table B summarises information related to 

the 42 plots used in this study.  

Table B. Summary of the Used Plot Data in This Study 

Age 
Basal 

(m2/ha) 

Volume 

(m3/ha) 

Stocking 

(tree/ha) 
Less than10 to 
more than30 

21 to 65 106 to 545 121 to 1150 

 

Multispectral SPOT-5 data acquired in April, 2008 was used in 

four bands including green, red, infra red (NIR) and short wave 

infra red (SWIR). The first three bands were acquired in 10m 

resolution, while SWIR was originally 20m. We resampled 

SWIR to 10m resolution, the same as the other bands. This 

image was radiometrically corrected in level 1A and 

orthorectified. For this study, DN values were used to calculated 

different GLCM layers, whereas researchers usually use 

reflectance conversion before building regression model. It can 

be argued that, as long as band ratio is not applied, as in this 

study, DN values are applicable to generate GLCM for biomass 

variable estimations.  

3. METHODOLOGY 

Four different neural networks including multi-layer perceptron 

(MLP) with three different activation functions, comprising of 

sigmoid, Gaussian and hyperbolic functions, and radial basis 

function (RBF), were compared to determine which one is 

better for estimating each biomass variable. In this study, these 

methods were used in an architecture comprising an input layer, 

one hidden layer and an output layer.   In MLP, the inputs are 

related to the output nodes through two types of input and 

output weighting coefficients, which are calculated during the 

training process. In the hidden part that can comprise more than 

one layer, different activation functions can be exploited to 

convert the input values. In RBF neural networks, there is one 

set of weighting coefficients and the input weighting 

coefficients have been replaced by radial units. The hidden layer 

is usually one layer in the RBF neural networks. Further details 

related to neural networks are beyond the scope of this paper 

and can be found in the computer science literatures (e.g. 

Benoudjit and Verleysen, 2003).    

In addition to the GLCM features presented in table A, three 

GLCM features including  maximum probability (MP) within 

window, energy (EN) or the square root of ASM and standard 

deviation (ST) which is the square root of variance, have been 

generated in 6 different window sizes including 3×3, 5×5, 7×7, 

9×9, 11×11 and 13×13. A subset of 30 plots was randomly 

selected as training data and 12 plots were used as test data. 

Then, in order to find attributes to be used as inputs for neural 

networks, a linear regression between each GLCM feature and 

each biomass variable was tested for the training dataset, and 

features whose correlations were higher than for the others for 

different window sizes were selected for the input to the neural 

network. Moreover, in order to avoid multicollinearity, high 

correlation among the selected attributes,  the interdependency 

of selected features was tested and highly correlated features 

were removed. The selected attributes were used in the neural 

networks. As the number of samples was insufficient for 

selecting validation data, a 5-fold cross validation method was 

used to adjust the neural networks parameters including the 

number of neurons and the number of iteration. The results of 

each method are reported using RMSE and correlation 

coefficients between the actual value of the test data and the 

predicted value for each biomass variable. 
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4. RESULTS 

As mentioned above, only those GLCM attributes which were 

not highly correlated were generated for 6 different window 

sizes and different multispectral bands. Table C shows the 

selected attributes of each band for the training dataset for use 

in the neural networks, as well as their correlations with each 

biomass parameter.  The highest correlation coefficients for 

each biomass variable are shown in bold text. 

Table C. The Selected GLCM Features to Be Used in Neural 

Networks 

Biomass variable Band GLCM feature R2 

Green COR 9×9 0.43 

Red HOM 13×13 0.63 

NIR 

MP 7×7 

ENT 3×3 

ME 13×13 

-0.25 

-0.11 

-0.68 

Basal area 

SWIR ----------- ----------- 

Green COR 7×7 0.25 

Red HOM 13×13 0.65 

NIR 

MP 7×7 

ENT 3×3 

ME 11×11 

COR 3×3 

-0.19 

-0.24 

-0.72 

0.10 

Volume 

SWIR COR 13×13 -0.20 

Green ----------- ----------- 

Red EN 5×5 0.62 

NIR 

MP 3×3 

ME 13×13 

COR 13×13 

-0.28 

-0.14 

0.57 

Stocking 

SWIR ----------- ----------- 

 

As table C shows there are significant relationships between 

multispectral SPOT-5 image and biophysical attributes of this 

plantation. This table demonstrates that ME, COR, ENT, HOM, 

EN and MP are the most suitable GLCM attributes for this 

study; however, it is not possible to recommend a certain size of 

window as the most efficient for the GLCM calculation.   

The best relationships between training data and biophysical 

attributes were obtained for the NIR and red bands, which are 

the most suitable bands for vegetation studies. The best 

correlation was obtained for the NIR band and volume and basal 

area with correlation coefficients of -0.72 and -0.68, 

respectively, while the highest correlation between multispectral 

bands and stocking occurred for the red band, with a correlation 

coefficient of 0.62. SWIR makes the lowest contribution for 

biomass variables predictions. One of the main reasons for this 

weak relationship is the coarser resolution of this band 

compared to the others. 

After selection of the most suitable GLCM attributes for use as 

inputs in neural networks, it was required to select the most 

important neural networks parameters, including the required 

number of iteration for the training process and the number of 

neurons in the hidden layer. These parameters were obtained 

through 5-fold cross validation. The rest of the parameters such 

as learning rate were set according to the literature. Table D 

gives the results for the 5-fold cross validation method. Table D 

shows that the number of iterations and neurons will change as 

the biomass variable and neural network method alter.  

Using four adjusted neural networks, three different biomass 

variables were predicted separately as shown in table E. Again, 

the highest values are in bold text. As table E shows the neural 

network methods, regardless of which method is used, were 

able to build a regression model with higher correlation 

compared to the linear relationships between training datasets 

and biomass variables. MLP methods can perform better than 

RBF neural networks for prediction of all biomass attributes.          

Table D. Neural Networks Parameters Derived from 5-Fold 

Cross Validation 

Method Biomass Variable Iteration Neuron 

Basal area 100 15 

Volume 100 4 
MLP 

(Gaussian) 
Stocking 100 8 

Basal area 1000 6 

Volume 100 5 
MLP 

(Hyperbolic) 
Stocking 10 11 

Basal area 100 5 

Volume 100 5 
MLP 

(Sigmoid) 
Stocking 100 3 

Basal area 100 7 

Volume 100 11 RBF 

Stocking 100 13 

 

Regarding the type of activation function, Gaussian function 

seems to be better (but has not tested statistically yet) than the 

other functions with lower RMSE, 4.12m2/ha for basal area and 

91.5m3/ha for volume, and higher correlations, especially for 

basal area. Hyperbolic function has higher efficiency compared 

to the other functions for predicting stocking. 

Table E. RMSE and correlation between input data and each 

biomass variable derived from different methods 

Method Biomass Variable RMSE R2 

Basal area (m2/ha) 4.12 0.91 

Volume (m3/ha) 91.5 0.83 
MLP 

(Gaussian) 
Stocking (trees/ha) 203 0.78 

Basal area (m2/ha) 6.58 0.85 

Volume (m3/ha) 96.5 0.81 
MLP 

(Hyperbolic) 
Stocking (trees/ha) 168 0.84 

Basal area (m2/ha) 5.74 0.88 

Volume (m3/ha) 99.9 0.79 
MLP 

(Sigmoid) 
Stocking (trees/ha) 206 0.73 

Basal area (m2/ha) 6.5 0.80 

Volume (m3/ha) 119.7 0.68 RBF 

Stocking (trees/ha) 216 0.73 

 

5. CONCLUSION 

The capability of GLCM attributes derived from SPOT-5 

multispectral image DN values, for estimation of biophysical 

variables including basal area, volume and stocking in plot level 

was investigated. MLP neural networks with three different 

activation functions and RBF neural network were compared for 

this task. The results showed GLCM attributes derived from DN 

values are efficient for use as predictors for biophysical 

parameters. According to the linear regression between different 

GLCM attributes and biophysical parameters, NIR and red 

bands were the most suitable bands for this task; however, the 

other bands should not be neglected. This paper shows no 

specific window size is superior for GLCM calculation. 

Moreover, it was shown that not all GLCM attributes are useful 

for biophysical parameter prediction. Generally, neural 

networks can perform efficiently to build regression models 
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between textural attributes derived from SPOT-5 multispectral 

image and biophysical parameters. MLP methods seem to 

perform better than RBF for biophysical parameter prediction, 

especially when Gaussian activation function is used for basal 

area and volume prediction and hyperbolic activation function is 

applied for stocking.  
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