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Abstract – Mechanisms of influence on typhoon intensity 

change in the northwestern Pacific are studied by using 

satellite remote sensing data. A decision tree of data mining 

technique is applied to analyze the possible influence of 

geophysical parameters on typhoon intensity change. The 

related geophysical parameters include sea surface 

temperature, atmospheric water vapor, rain rate, sea 

surface height anomaly, and sea-air temperature difference. 

The total number of 14 Category-5 typhoons occurred 

between 2003 and 2007 in the northwestern Pacific is 

employed for this study. The results indicate that the major 

mechanism of influence on typhoon intensity change is sea-

air temperature difference and the second one is sea surface 

temperature. About 88% typhoon intensity is enhanced 

when a typhoon passes over the ocean where its sea surface 

temperature is larger than air temperature. The model is 

further validated by typhoon JANGMI. The accuracy and 

precision of this model are 82.3% and 85.7%, respectively.  
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Decision tree, Sea surface temperature, Air-sea interaction. 

 

 

1. INTRODUCTION 

 

The western North Pacific is an area of the most frequent 

tropical cyclones strikes over the world (Figure 1). There are 6 

to 10 typhoons of Category 4 or 5 in the Saffir-Simpson 

hurricane scale emerge in the western North Pacific every year 

(Lin et al., 2005). These severe typhoons bring drastic impact on 

the coastal area through powerful winds and torrential rain. The 

ocean response to the typhoon is one of the most important 

components of air-sea interaction. Previous studies have shown 

that the changes of geophysical parameters of ocean and 

atmosphere may affect the typhoon intensity during its lifetime. 

Alliss et al. (1992) used the rainfall data from SSM/I (Special 

Sensor Microwave/Imager) onboard the DMSP (Defense 

Meteorological Satellite Program) satellites to calculate the total 

latent heat release from Typhoon Hugo (1989) and found that 

the typhoon intensity is enhanced with the increase of total 

latent heat release. Schade and Emanuel (1999) reported that the 

surface cooling response directly affects the transfer of heat 

from the ocean to the atmosphere and thus the typhoon intensity 

changes. Shay et al. (2000), and Goni and Trinanes (2003) 

estimated the tropical cyclone heat potential (TCHP) from 

Microwave Imager (TMI) and sea surface height anomaly 

(SSHA) derived from satellite altimetry and pointed out the 

relationship between typhoon intensity and TCHP. When a 

typhoon passes by a warm eddy, it is possible to enhance its 

intensity. Lin et al. (2005), Wu et al. (2007), and Lin et al. 

(2009) also indicated that warm upper ocean may provide more 

heat content to typhoon to increase its intensity. Thus, getting 

more understanding about the behavior of upper ocean response 

in response to a typhoon passage prove to be the key for further 

improving the understanding and prediction of the typhoon 

intensity change. 

 

 
Figure 1. Tracks of tropical cyclones from 2000 to 2007. The 

most intensity occurred area of tropical cyclones is in the 

Northwestern Pacific. 

 

Because typhoons are such transient, violent atmospheric 

processes with great variations in trajectory and strength that 

upper ocean response are hardly captured by ship-borne 

observation and cruise tracks. Therefore, satellite observations 

and reanalysis data are used to characterize and quantify the 

upper ocean dynamic existing prior to the typhoon passage, as 

well as the location and magnitude of an upper ocean response 

to a typhoon after typhoon passage. Satellite remote sensing has 

the potential to be an efficient and reliable way to provide 

continuous measurements for quantifying the ocean response to 

a typhoon. In this paper, we use data mining technique to 

explore mechanisms of influence on typhoon intensity change 

from extensive remote sensing data. The study area is in the 

western North Pacific from the Equator to 40°N in latitude and 

from 120°E to the International Date Line in longitude (Figure 

2). 

 

 
Figure 2. The Study area. The color shows the distribution of sea 

surface temperature in 2007. 

 

 



2. DATA 

 

2.1 Typhoon Data 

The total number of 14 typhoons with category 5 in Saffir-

Simpson scale, that is, central pressure lower than 920 hPa in the 

northwestern Pacific from 2003 to 2007 is used for this study. 

The data of typhoon’s central pressure, latitude and longitude in 

every six hours are obtained from Japan Meteorological Agency 

(JMA). 

 

2.2 Satellite Data 

Four kinds of remote sensing measurements area used in this 

work including sea surface temperature (SST), sea surface 

height anomaly (SSHA), water vapor (WV), and rain rate (RR). 

The SST data is derived from the Tropical Rainfall Measuring 

Mission/Microwave Imager (TRMM/TMI) and the Advanced 

Microwave Sounding Radiometer for the Earth Observing 

System (AMSR-E). The SSHA data is derived from altimeters 

onboard the TOPEX/POSEIDON, Jason-1, ERS-1/2, and 

ENVISAT satellites. SSHA is defined as the difference between 

the observed sea-surface height and the seven-year (1993-1999) 

mean of sea-surface height data. The WV and RR data is 

derived from TRMM/TMI. All remote sensing data is 

interpolated into a spatial resolution of 0.25º in latitude and 

longitude and a temporal resolution on daily. 

 

2.3 Re-analysis Data 

Since air temperature is not easy to obtain from satellite remote 

sensing, the air temperature data is re-analysis data obtained 

from the National Center for Environmental Prediction (NCEP) 

at National Center for Atmospheric Research. The data has a 

spatial resolution of 2º and daily temporal resolution. 

 

 

3. METHOD 

 

3.1 Data Mining and Decision Tree 

Data mining, also called knowledge discovery, is the process of 

automatically or semi-automatically analyzing data from 

different perspectives to discover useful information (Berry and 

Linoff, 1997). It is also the process of finding correlations or 

patterns in a group of data (Frawley et al., 1992; Berson et al., 

1999; Ronald, 2001). Many algorithms are used in data mining. 

One of the most frequently used algorithms is decision tree. Han 

and Kamber (2006) pointed out that decision tree is a tree-form 

structure consisting of nodes and branches. Each internal node 

represents a test of the nature of the data and the branch 

indicates the result of the test. The leaf nodes (i.e., the final 

nodes) stand for the categories or the category distribution. A 

chart of decision tree is shown in Figure 3. There is a specific 

path that dictates the decision tree classification from root to leaf 

nodes in decision tree. To avoid the over-fitting problem in 

decision tree, appropriate reduction, or pruning, must be 

conducted to improve decision tree accuracy. There are two 

types of pruning-pre-pruning and post-pruning. In pre-pruning, 

the preset threshold keeps decision tree from growing as the 

nodes on the rear turn into leaves of the tree, and the label of the 

leaves becomes the overwhelming category in the training set of 

the node. In post-pruning, a complete number is established 

before removing the branches. The branches are removed based 

on the calculation of the error rate of the branch, and the branch 

nodes on the rear that are not removed become leaves. 

Frequently used algorithms in decision tree include ID3 

(Iterative Dichotomiser 3), C4.5, CART (Classification and 

Regression Trees) and CHAID (Chi-Squared Automatic 

Interaction Detector). C4.5 is the algorithm to be used in this 

study. 

Figure 3. A diagram of decision tree algorithm. 

 

 

3.2 C4.5 Algorithm 

C4.5 is an algorithm modified from ID3 algorithm (Quinlan, 

1993). It uses an extension to information gain as gain ratio to 

overcome bias of ID3. At each node of the tree, C4.5 algorithm 

chooses one attribute of the data that most effectively splits its 

set of samples into subsets enriched in one class or the other. It 

can handle both continuous and discrete attributes. In order to 

handle continuous attributes, C4.5 algorithm creates a threshold 

and then splits the list into those whose attribute value is above 

the threshold and those that are less than or equal to it. The 

algorithm builds decision tree from training data using the 

concept of information entropy. The smaller the information 

entropy required, the greater the purity of the partitions. The 

information entropy is given by (Han and Kamber, 2006) 
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where ip  is the probability that an arbitrary tuple in S belongs 

Class iC . Assume we were to partition the tuples in S on some 

attribute A having n distinct values, { }naaa ,,, 21 K , as 

observed from the training data. Attribute A can be used to split 

S into n partitions or subsets, { }nDDD ,,, 21 K , where jD  

contains those tuples in D that have outcomes ja  of A. These 

partitions would correspond to the branches grown from Node N. 

The expected information required to classify a tuple from S 

based on the partitioning by A is measured by 
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Information gain is defined as 
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The information gain measure is biased towards tests with many 

outcomes. To overcome this bias, C4.5 uses an extension to 
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information gain as gain ratio. It applies a kind of normalization 

to information gain using a “split information” value defined as 
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The gain ratio is then defined as 
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The attribute with the maximum gain ratio is selected as the 

splitting attribute. 

 

 

4. DATA MINING MODE 

 

4.1 Data Preprocessing 

The central pressure of typhoon is assigned to be “N” if the 

pressure difference between the one and previous one is positive 

(the intensity weakens), to be “Y” if the difference is negative 

(the intensity strengthens), as well as to be “S” if the difference 

is zero (the intensity sustains). 

 

To identify the difference of SST before and after typhoon pass 

by, the SST anomaly is computed by subtraction of 7-day 

running average from daily SST. The reason that we use 7-day 

running average instead of monthly average is to avoid the 

influence of seasonal variation. The anomalies of WV and RR 

are computed by subtraction of monthly mean from daily data. 

For the different spatial resolution of air temperature, it has been 

re-gridded into 0.25º, the same as that of SST and then 

calculates the temperature difference between sea surface and 

air (SATD). If the value is positive of above-mentioned data, we 

assign it as “Y”. If the value is negative, we assign it as “N” and 

as “S” if the value does not change.  

 

4.2 Data Sampling 

After remove the null data, we finally have the total number of 

378 data in which there are 186 data during the strength period 

of typhoon intensity, 62 data during the weakness period, and 

130 data during the unchanged phase. Since the cases of 

weakness are fewer than others and the number of cases would 

influence the accuracy of predication result, to reduce the effect 

we adapt the “force sampling” technique to increase the number 

of data during weakness period from 62 to 92. Therefore, we 

have the total number of 408 data to be analyzed. 

 

4.3 Model Construction 

There are five input attributes including SST, WV, RR, SSHA, 

and SATD. The output attribute is the intensity of typhoon. For 

the training data, which is usually the bigger part of data, is used 

for constructing the tree. The more training data collected, the 

higher the accuracy of the results. The other group of data, 

testing, is used to get the accuracy rate and misclassification rate 

of the decision tree. In this study, we randomly choose 70% of 

the data (286) for training and 30% of the data (122) for testing. 

The minimum support of split is 40 to avoid the tree too 

complicate. 

 

 

5. RESULTS AND DISCUSSION 

 
5.1 Results 

Using the decision tree model with C4.5 algorithm, we have the 

result. The major factor to affect the typhoon intensity is the 

temperature difference between sea surface and air and the 

second factor is sea surface temperature. As shown in Figure 4, 

the first split point of the attribute is SATD > 0 and SATD ≤ 0. 

The second split point is SST > 0 and SST ≤ 0.  

 

 

         
Figure 4. The tree results from decision tree model. 

 

 

The SATD > 0 means that the sea surface temperature is larger 

than the air temperature, which indicates the heat flux is upward 

from sea surface to atmosphere. The more heat flux atmosphere 

receives, the more typhoon intensity strengthens. The SST is 

also a major factor to affect typhoon intensity because higher 

SST can provide more heat flux. This prediction model indicates 

that when a typhoon passes over the ocean where SATD > 0, 

about 88% the typhoon intensity is enhanced.   

 

5.2 Effective Assessment 

To assess whether the model is effective at making predictions, 

we use the typhoon JANGMI (2008) data set which does not 

apply to the training and the testing stages for constructing the 

model. Table A shows the model predicted results and the actual 

data of typhoon JANGMI. The classification matrix (Table B) is 

also created for effective assessment. Because there are only 

three possible conditions (Y, N, and S) for this predictable 

attribute, it is easy to know how the model correctly makes a 

prediction. From Table B we can compute the accuracy of 

predicted which is 14/17=82.3% and the precision of typhoon 

enhanced is 12/14=85.7%. 

 

 

Table A. The Typhoon Intensity Change from Predicted Results 

(Pred) and Actual Data (Actu) 

Pred Y Y Y Y Y Y Y Y Y Y Y S Y Y S Y N 

Actu Y Y Y S Y Y Y Y Y Y Y Y Y Y S N N 

 

 

Table B. Classification Matrix of typhoon JANGMI 

 N (Actual) S (Actual) Y (Actual) Total 

N (Predicted) 1 0 0 1 

S (Predicted) 0 1 1 2 

Y (Predicted) 1 1 12 14 

Total 2 2 13 17 

 

 

6. CONCLUSIONS 

 

Attributes 

SATD >>>> 0 SATD ≤≤≤≤ 0 

SST >>>> 0 SST ≤≤≤≤ 0 



The typhoon intensity changes of category 5 typhoons from 

2003 to 2007 in the western North Pacific have been studied 

using data mining technique. The oceanic and atmospheric 

parameters in the study area are retrieved from satellite 

remotely-sensed data and re-analysis data. These parameters 

include sea surface temperature, water vapor, rain rate, sea 

surface height anomaly, and air temperature. The algorithm of 

the data mining technique is C4.5 decision tree model. The 

results are summarized as follows. 

 

1. The major mechanism of influence on typhoon intensity 

change is the sea-air temperature difference and the second 

one is sea surface temperature. 

2. About 88% typhoon intensity is enhanced when a typhoon 

passes over the ocean where its sea surface temperature is 

larger than air temperature.  

3. The predicted model is further validated by using typhoon 

JANGMI. The accuracy of this model is 82.3% and its 

precision is 85.7%. 
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