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Abstract – The joint processing of remote sensing data 

acquired from sensors operating at different wavelengths 

has the potential to significantly improve the operation of 

global forest mapping and monitoring systems. This paper 

presents an analysis of the forest discrimination properties 

of Landsat TM and ALOS-PALSAR data when considered 

as a combined source of information. This study is carried 

out over a test site in north-eastern Tasmania, Australia. 

Canonical variate analysis, a directed discriminant 

technique, is used to investigate the separability of a number 

of training sites, which are subsequently used to define 

spectral classes as input to maximum likelihood 

classification. An accuracy assessment of the classification 

results is provided on the basis of independent ground 

validation data, for the Landsat, PALSAR, and combined 

SAR–optical data. The experimental results demonstrate 

that: 1) considering the SAR and optical sensors jointly 

provides a better forest classification than either used 

independently, 2) the HV polarisation provides most of the 

forest/non-forest discrimination in the SAR data, and 3) the 

respective contribution of each of the Landsat and PALSAR 

bands to the separation of different types of forest and non-

forest land covers varies significantly. 

 
Keywords: land cover, vegetation, mapping, environment, data 

fusion.  
 

1. INTRODUCTION 

The recent deployment of several SAR (synthetic aperture 

radar) remote-sensing satellites provides a valuable source of 

Earth observations that complement the currently existing, 

predominantly optical observations. In parallel, the development 

of robust methods for large-scale forest monitoring is also 

becoming increasingly important. These aspects provide a 

strong motivation for the development of global monitoring 

systems able to take advantage of the synergies between optical 

and radar imagery. An important step towards this goal is to 

address the key aspect of sensor complementarity (adding 

thematic value by using more than one sensor), and thus to 

quantify the performance gains achievable by using a SAR–

optical data fusion approach. 

 

Several existing studies provide insights into the synergy of 

optical and SAR data for the mapping of various land covers. 

Shimabukuro et al. (2007) investigated the relationship existing 

between Landsat TM and L-band JERS-1 data when 

considering various land cover types in Amazonia. Their study 

reported that the SAR data is highly correlated with information 

derived from Landsat fraction images in the region of interest. 

The work presented by Erasmi and Twele (2009), which 

considers Envisat-ASAR and Landsat ETM+ data acquired over 

a tropical study area in Indonesia, also concluded that the most 

accurate land cover mapping is achieved by a combination of 

the optical and SAR sensors. On the other hand, the results 

provided by Maillard et al. (2008) indicated that the use of C-

band Radarsat-1 data did not improve the ASTER-based 

classification of different types of wetlands and surrounding 

vegetation in the Brazilian savanna. Another study by Imhoff et 

al. (1986) found little correlation between L-band SIR-B data 

and Landsat MSS data for forest canopy characterisation in 

mangrove jungles of Southern Bangladesh, mostly due to the 

overriding influence of standing water beneath the forest cover. 

 

This article demonstrates the potential use of combined Landsat 

TM and ALOS-PALSAR data for forest monitoring, and 

presents a quantitative analysis and comparison of forest/non-

forest (F/NF) discrimination results. It reports some of the 

findings resulting from the work carried out in the frame of the 

Forest Carbon Tracking task of the Group on Earth 

Observations (GEO-FCT, www.geo-fct.org) in a study area in 

north-eastern Tasmania, Australia. Using a set of training sites, 

a linear discriminant technique (canonical variate analysis, 

CVA) is first applied to each data set separately as well as the 

combined SAR–optical data (created by concatenating the 

Landsat and PALSAR bands). This supervised approach 

provides information on the sites’ spectral grouping into sub-

classes as well as their spectral separation. A variable selection 

analysis is also performed, producing quantitative metrics on 

the separation provided by various combinations of the SAR 

and optical bands.  Using the clusters derived in the first step, a 

maximum likelihood classifier is applied to the individual 

optical and SAR data as well as the combined data set, resulting 

in three different classifications. The classification accuracy of 

each is then summarised against ground validation data.  

2. DATA AND STUDY AREA 

2.1. Study Area 

This work is part of a pilot study carried out for a 66km×50km 

demonstration area in the Ben Lomond region in north-eastern 

Tasmania, Australia (Figure 1, left). This area includes one of 

Australia’s national calibration sites defined in the frame of the 

GEO-FCT initiative. It contains a variety of land covers 

including rainforests, wet and dry eucalypt forests, non-eucalypt 

forests, exotic plantations for silviculture, agricultural land, as 

well as other types of cleared land (deforestation) and urban 

areas. Significant topographic variations can also be found 

across the study site, with the terrain elevation varying between 

85m and 1510m above sea level. 

2.2. ALOS-PALSAR Data 

The SAR data over the study area was acquired by the ALOS-

PALSAR sensor at L-band (~24cm wavelength) in fine-beam 

dual-polarisation mode (HH and HV), in an ascending orbit 

with off-nadir angle of 34.3°. In this study, the SAR data set 

consists of a mosaic of two PALSAR scenes, namely scene 

381/6340 in the west (acquired on October 04, 2008) and scene 



   
Figure 1.  Left: SAR mosaic over Tasmania (HH/HV/HH-HV in R/G/B), with box showing the considered 66km×50km study area. 

Middle: ALOS-PALSAR data set (HH/HV/HH-HV in R/G/B) over the study area, with white pixels corresponding to the SAR 

layover and shadow masks. Right: Landsat TM data for the considered area (bands 5/4/2 in R/G/B); white areas indicate regions 

masked out due to missing data. 

 

 380/6340 in the east (acquired on September 19, 2008). The 

single-look complex data (SLC level 1.1) was pre-processed 

according to the following steps: 1) 8×2 multi-looking resulting 

in a 29.8m×25.1m pixel size, 2) speckle filtering by means of 

adaptive 5×5 Lee filter, 3) radiometric calibration and 

normalisation, 4) geocoding to 25m pixel size to match the 

Landsat resolution, using a digital elevation model (DEM) with 

25m cell resolution, 5) terrain illumination correction using the 

25m DEM, 6) creation of a two-scene mosaic using a gradient 

mosaicking process, and 7) masking of the data using layover 

and shadow masks. 

 
This processing sequence provides a mosaic of orthorectified, 

terrain-corrected and radiometrically calibrated PALSAR 

scenes at a resolution of 25m (Figure 1, middle). The terrain 

illumination correction step is necessary to compensate for 

illumination differences due to the local variations in 

topography and the side-looking orientation of the SAR sensor. 

In this work, the terrain correction was carried out using the 

algorithm described in Zhou et al. (2011), which considers the 

SAR scattering in forested areas together with the local slope 

angles to derive the terrain correction coefficients. 

 
Texture measures applied to the resulting SAR imagery were 

not found to add significant value for the F/NF discrimination 

and classification. This, however, may be due in part to the 

measures being generated from the pre-processed data, and 

subsequent work will be carried out to determine whether such 

measures applied to the raw data are able to improve the results. 

2.3. Landsat TM Data 

The optical data used in this work was obtained from the 

existing archive of calibrated Landsat MSS/TM/ETM+ images 

produced as part of Australia’s National Carbon Accounting 

System (NCAS) (Caccetta et al., 2010). Within this framework, 

each Landsat scene is processed according to the following 

steps: 1) orthorectification to a common spatial reference, 2) 

top-of-atmosphere reflectance calibration, i.e., sun angle and 

distance correction, 3) correction of scene-to-scene differences 

using bi-directional reflectance distribution functions, 4) 

calibration to a common spectral reference using invariant 

targets, 5) correction for differential terrain illumination, 6) 

removal of corrupted data such as regions affected by smoke, 

clouds and sensor deficiencies, and 7) mosaicking of the 

individual Landsat scenes into 1:1,000,000 map sheets. 

 
Key aspects of these processing steps are discussed in Caccetta 

et al. (2010) and full operational details are given in Furby 

(2002). For 2008, the optical data over the study area 

corresponds to a mosaic of two Landsat scenes (combination of 

Landsat-5 and Landsat-7 data) acquired on January 14 and 

February 24, respectively (Figure 1, right).  

2.4. Data Coregistration 

Ideally, accurate coregistration between the Landsat and SAR 

images would be established with the use of cross-correlation 

techniques, image to image registration, and a common 

elevation model in order to achieve sub-pixel coregistration 

results. In this work, a common elevation model was used but 

the PALSAR data was orthorectified using the sensor’s orbital 

parameters while the Landsat data was taken from the legacy 

NCAS system, which used historic state topographic mapping 

as its primary control. Spatial cross-correlation of the two data 

sets was performed using 299 GCPs to check the coregistration 

of the two data and produced a relative accuracy estimate of 0.6 

pixel RMS (at 25m pixel size) with 98% of the residuals below 

1.5 pixels, and with no apparent signs of systematic spatial 

deviations in the displacements between the two images. 

 

The coincidence of acquisition is another important aspect for a 

joint processing of the data. While not completely true here 

(Sept./Oct. 2008 vs. Jan./Feb. 2008), the SAR and Landsat data 

will be assumed to be coincident for the specific purpose of this 

pilot study. A further discussion of this particular issue is 

provided in Section 4. 

2.5. Reference Data 

The selection of training and validation sites used in the 

analyses was based on a combined consideration of SPOT 

imagery (2.5m resolution) and a vegetation map product 

(TASVEG) from the state of Tasmania. The TASVEG map 

contains information on land cover type, and the SPOT data 

provides an added check on whether the land cover has deviated 

or changed from the TASVEG label. In the area of interest, the 

SPOT image is a mosaic of four scenes acquired between 

November 2009 and February 2010.  

 

TASVEG is a Tasmania-wide vegetation map produced by the 

Tasmanian Vegetation Mapping and Monitoring Program 

within the Department of Primary Industries and Water 

(www.thelist.tas.gov.au). It comprises 154 distinct vegetation 

communities mapped at a scale of 1:25,000, and provides a 

reference that can be used for a broad range of management and 

reporting applications relating to vegetation in Tasmania. This 

information is based on a combination of field observations, 

photo-interpretation and information from other sources such as 
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Figure 2.  CVA plot for combined SAR–optical data, showing 

four of the selected six sub-classes (two more classes selected 

among remaining sites). Sites in red were selected in native 

forests and mature plantations, sites in black in non-forested 

areas, and sites in green in harvested/growing plantations. 

 

 
geological maps and permanent inventory plots. TASVEG is 

continually revised and updated to reflect changes in the natural 

environment. In the current area of interest, field work for 

revision mapping commenced in March 2005 and was 

completed in October 2008. The selection of training and 

validation data was also done in conjunction with the Landsat 

and PALSAR imagery so as to minimise potential errors due to 

the different acquisition times of the reference data. 

3. FOREST/NON-FOREST CLASSIFICATION 

The F/NF discrimination analysis carried out in this work was 

applied to the following three data sets: 

 

1. Landsat only (six spectral bands, thermal band omitted) 

2. PALSAR only (two spectral bands) 

3. combined SAR and optical data (eight spectral bands), 

obtained by concatenating the Landsat and PALSAR bands. 

 

Based on the reference data, a total of 230 training sites were 

selected for the classifications so as to represent a broad range 

of land cover types over the study area. Each site contains 

roughly 150 to 200 pixels. The same training sites were used for 

the analysis of all three data sets, though aggregated separately 

in each analysis. 

3.1. Definition of Spectral Classes using CVA 

Using the training data, canonical variate analysis (Campbell 

and Atchley, 1981) produces a set of orthogonal linear basis 

functions (canonical vectors, CVs) based on maximising the 

ratio of between-class separation to within-class variance. The 

metrics and plots produced by this technique provide the analyst 

with knowledge from which an informative decision may be 

made on whether to group, not to group, or reject sites. The 

analysis also provides information on the reliability with which 

the selected sub-classes may be mapped. For the three data sets 

considered in this work, CVA was used to aggregate the 

training sites into a number of sub-classes to reflect the common 

spectral characteristics of different land covers. These groupings 

included cover types such as water, mature plantations, alpine 

and subalpine heathland, Buttongrass moorland, etc. 

 

Figure 2 shows an example of CVA plot obtained for the 

combined PALSAR–Landsat data, with the sites’ means 

displayed in the space defined by the first two CVs. A total of 

six different sub-classes could be selected for the combined 

SAR–optical data (four of which are displayed in Figure 2), five 

for Landsat, and four for PALSAR. The number of sub-classes 

reflects the ability of each data to discriminate between different 

land covers. Another measure of separability among the 

different sites is provided by the canonical roots, which give an 

indication of the magnitude of the discrimination provided by 

each canonical vector. The canonical roots resulted as follows: 

 

1. Landsat only:  18.92  8.57  3.24  1.72  1.14   0.53 

2. PALSAR only:  24.02  2.94 

3. combined:  28.94  12.65  7.69  3.33  1.79  1.31  1.08  0.43 

 

The larger the values of the canonical roots, the greater the 

separation. These results show that much of the sites’ separation 

using Landsat data is contained in two to three dimensions, and 

adding the SAR data effectively provides another dimension. 

3.2. Maximum Likelihood Classification 

The spectral groupings identified in Section 3.1 provided the 

classes used for a contextual maximum likelihood classifier 

(MLC), which produces a class label image for each of the three 

data sets (Kiiveri and Campbell, 1992). Maximum likelihood 

classification was used due to its ability to provide distance 

metrics related to the separation of the selected sites and classes. 

Of interest in this work is the classification accuracy of the 

F/NF classes. To assess this, the multi-class output of the MLC 

was collapsed into forest and non-forest labels. Figure 3 shows 

the resulting F/NF classifications for the PALSAR, Landsat, 

and combined SAR–optical data over the study area.  

 

A quantitative assessment of these F/NF classification results 

was carried out on the basis of 88 validation sites, selected 

independently of the training sites and uniformly distributed 

over the study area. Table 1 presents the resulting classification 

accuracy as the percentage of validation sites mapped to the 

correct forest or non-forest class by the MLC. The middle 

column (Classification 1) corresponds to the case where the 

grouping of training sites into sub-classes for the MLC is made 

independently for each data set, as explained in Section 3.1 (i.e. 

four sub-classes for PALSAR, five for Landsat, and six for the 

combined data set). This effectively represents the best 

classification results achievable for each of the data. These 

results show that the best classification is achieved when both 

the SAR and optical data are used jointly, with a 5.7% 

improvement over the PALSAR-only and 2.3% improvement 

over Landsat-only classifications. 

 
Table 1.  Accuracy of F/NF classifications (percentage of 

validation sites mapped correctly by the MLC). 
 

 Classification 1 Classification 2 

Landsat 92.05 % 89.77 % 

PALSAR 88.64 % 87.50 % 

combined 94.32 % 94.32 % 

 
The last column in Table 1 corresponds to the results obtained 

when the six sub-classes of training sites defined for the 

combined SAR–optical data set are also used in the 

classification of the PALSAR-only and Landsat-only data. As 

these six sub-classes correspond to the best number of classes 



  
 

  
Figure 3.  Maximum likelihood F/NF classifications with forest in green and non-forest in grey for PALSAR (top-left), Landsat (top-

right), and combined PALSAR–Landsat data (bottom-left). White pixels represent masked areas. Bottom-right: TASVEG map with 

forest in green, non-forest in grey, and plantations (harvested, growing or mature) in orange. 

 

 that may be reliably monitored, these results provide an 

indication of the performance degradation that would result in 

the joint SAR–optical classifier should one of the input data sets 

be unavailable (e.g., cloud-affected areas in optical data). 

 

As a typical example of the classification improvements 

achievable by combining SAR and optical data, Figure 4 

focuses on a subset of the MLC outputs in an area known to 

present difficulties for the classifications. The depicted 

20km×15km region is located around Ben Lomond, a large 

rocky plateau culminating at an altitude of approximately 

1300m and covered mostly in highland treeless vegetation 

(alpine heathland and sedgeland). The bottom-left plot in Figure 

4 indicates that the SAR data cannot separate the non-forest area 

in the middle of the plateau (possibly due to the influence of 

surface moisture in low stature vegetation at the time of 

acquisition). On the other hand, the Landsat classification 

(middle plot, bottom) over-estimates the non-forest areas in the 

north and west of Ben Lomond. The combination of the 

PALSAR and Landsat data leads to improved classification 

results (bottom-right plot) that can be seen to match the 

TASVEG reference data (top-right plot) much more closely. 

3.3. Band Information 

Another aspect of interest is to examine the level of information 

provided by different combinations of Landsat and PALSAR 

data. To achieve this, a variable selection is performed 

(MacKay and Campbell, 1982). Table 2 presents the results as 

the percentage of discrimination provided by various subsets of 

bands with respect to the information available when all bands 

are considered simultaneously. This assessment is performed for 

four scenarios used to check the discrimination existing between 

different sub-classes of training data (sites from the ‘water’ sub-

class were removed from the analysis due to their clearly-

separable spectral signatures). The column labelled ‘F vs. NF’ 

presents generic discrimination results when all the forest sites 

are compared (contrasted) to all the non-forest sites. This 

column indicates that: 1) most of the F/NF information provided 

by the SAR data (68%) is available from the HV polarisation 

alone (67.8%), 2) the HH polarisation (16.3%) contains less 

than a quarter of the discrimination information compared to 

HV (67.8%), and 3) the combination of SAR and optical data 

significantly improves the forest classification compared to 

Landsat-only (59.2%) and PALSAR-only (68%). 

 
Table 2.  Proportion (in %) of the discrimination information 

provided by different combinations of the Landsat and 

PALSAR bands, in comparison to using all available bands. 
 

Bands F vs. NF Contrast 1 Contrast 2 Contrast 3 

HH 16.3 23.7 31.7 3.9 

HV 67.8 50.8 24.0 0.0 

HH+HV 68.0 54.7 39.1 4.3 

TM (6 bands) 59.2 73.6 41.0 98.6 

TM + HH 68.1 82.2 84.5 100.0 

TM + HV 99.8 98.9 79.9 98.9 

TM+HH+HV 100.0 100.0 100.0 100.0 

 
The last three columns of Table 2 correspond to a contrast of the 

least separable forest sub-class with each of three neighbouring 

clusters of non-forest sites (harvested/growing plantations for 

‘Contrast 1’, mixture of alpine heath and Buttongrass moorland 

for ‘Contrast 2’, and alpine heathland/sedgeland for ‘Contrast 

3’), as determined in the CVA for the combined SAR–optical 

data. These results show that the respective contributions of the 

SAR and optical data, and that of the HH and HV polarisations, 

vary significantly when considering the separation of particular 

sub-classes of forest and non-forest sites.  



   
 

   
Figure 4.  Example of MLC outputs for the Ben Lomond area (20km×15km). In all plots, white pixels indicate masked areas. Top 

row, left: PALSAR data (HH/HV/HH-HV in R/G/B). Top row, middle: Landsat data (bands 5/4/2 in R/G/B). Top row, right: 

TASVEG map with forest in green, non-forest in grey, and plantations in orange. Bottom row, left to right: maximum likelihood 

F/NF classifications with forest in green and non-forest in grey for PALSAR, Landsat, and combined PALSAR–Landsat data. 

 

 
4. CONCLUSION 

This paper investigated the forest discrimination properties of a 

combined SAR and optical data set. Significant classification 

improvements resulted from the combined data in comparison 

to using either Landsat or PALSAR separately, despite a 

significant variation in the respective contributions of the SAR 

and optical bands to the discrimination of specific land cover 

types. In accordance with previous literature works, the HV 

polarisation was here also found to provide most of the 

discrimination between the forest and non-forest classes 

compared to HH.  

 

The approach presented in this paper essentially relies on the 

assumption that the available data are temporally coincident. 

Should this assumption be invalid, thematic differences between 

the SAR and optical data resulting from different acquisition 

dates could be detected in the maximum likelihood 

classification as a result of the corresponding pixels presenting 

atypical spectral signatures. A different approach to this issue 

would be to consider the different data sets as a time series in a 

multi-temporal classification framework, thus alleviating the 

need to ensure coincidence. This particular data fusion approach 

will be the focus of future research. 
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