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Abstract – There has been a recent proliferation of remote 

sensing-based trend analysis for monitoring regional 

desertification. These show contradictory results.  All of them 

claim to have been “validated” through expert interpretation, 

in the absence of sufficient field data. We suggest that such an 

approach is not sufficiently rigorous. Therefore, we 

demonstrate an approach which simulates land degradation so 

that the intensity, rate and timing of the reduction in NDVI 

can be controlled, in order to quantitatively evaluate the 

ability of methods to detect these known changes. The results 

show that linear trend analysis is rather insensitive to 

previously observed levels of NDVI reduction due to 

degradation in the well-studied communal lands in the 

Lowveld of South Africa. The period of investigation, has a 

large but rather unpredictable influence on the linear trends. 

This casts doubts over the ability of linear trend analysis, to 

detect relatively subtle, slowly-developing degradation in semi-

arid rangelands. 
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1. INTRODUCTION 

 

Desertification (or land degradation in dry areas) can be defined a 

persistent loss of ecosystem services (MA, 2005), building on 

earlier definitions based on reduced biological productivity 

(UNCCD, 1994). Many  studies have used  multi-year, coarse 

resolution (≥1 km) satellite data to monitor changes in the duration 

and amount of green vegetation cover, as a proxy for changes in  

primary productivity for the purposes of assessing land 

degradation (Bastin et al., 1995; Diouf and Lambin, 2001; 

Nicholson et al., 1998; Prince et al., 1998; Prince and Justice, 

1991; Tucker et al., 1991a; Tucker et al., 1991b; Wessels et al., 

2007). The indices based on reflectance in the visible and near-

infrared spectra (e.g. Normalized Difference Vegetation Index, 

NDVI) have been shown to correlate with plant biomass, leaf area 

and primary production (Huete et al., 2002). The Advanced Very 

High Resolution Radiometer (AVHRR) sensors have collected 

nearly thirty years of data available for monitoring land 

degradation. However, monitoring and detecting desertification in 

this way has become a controversial topic. The methods for 

identifying desertification from satellite and rainfall data are 

fiercely debated in the scientific literature (Bai et al., 2008; Hein 

and de Ridder, 2006; Prince et al., 2007; Veron et al., 2006; 

Wessels, 2009). 

 

The basic problem is that different trend assessments, based on 

similar time series of satellite vegetation index data, lead to 

conflicting answers in terms of which areas are showing negative 

trends (Bai et al., 2008; Hein and de Ridder, 2006; Hellden and 

Tottrup, 2008; Prince et al., 2007; Wessels, 2009). There is 

furthermore a general lack of suitable field data spanning the 

duration of the satellite time-series (1980’s to present), effectively 

precluding the quantitative evaluation of the methods (Fensholt et 

al., 2009; Hellden and Tottrup, 2008; Wessels et al., 2007). Most 

of the studies have therefore resorted to “validating” trend analysis 

maps through the use of regional expert opinion or by invoking 

ancillary data sets and publications. We suggest that such an 

approach is not sufficiently rigorous.  

 

Therefore, we propose an approach which simulates land 

degradation so that the intensity, rate and timing of the reduction 

in NDVI (vegetation production) expected from land degradation 

can be controlled, in order to quantitatively evaluate the ability of 

linear trend analysis methods to detect these known changes. The 

duration of the assessment period is also varied. The approach 

would enable basic questions to be addressed, such as: how 

intense, rapid and prolonged must the reduction in NDVI be 

before a statistically significant negative trend can be inferred?  

 

We demonstrate the approach for a semi-arid region in the north-

east of South Africa, the Lowveld, which encompasses both 

protected areas and areas of documented degradation (Hoffman 

and Todd, 2000). Previous research in the area has demonstrated 

that the sum of 10-day maximum NDVIs measured over the 

growth season (October to April) was 10 - 20% lower in degraded 

rangelands than in undegraded areas and that this difference did 

not decrease in years of high rainfall (Wessels et al., 2007; 

Wessels et al., 2004). 

 

2. MATERIALS AND METHODS  

 

2.1  Study area 

The study area is located in savannas in the north-eastern part of 

South Africa (Fig. 1). The area is especially suited for the 

simulation of land degradation, since the apartheid-era 

“homelands”, now communal-tenure areas, are juxtaposed with 

areas under conservation, such as the 2 million ha Kruger National 

Park (Pollard et al., 2003). The former homelands are densely 

settled, impoverished and are widely agreed to represent a 

degraded state with respect to soil erosion, grazing potential, and 

fuel wood resources (Hoffman and Todd, 2000; Twine, 2005). 

They are generally characterized by high livestock numbers, 

principally cattle and goats, at 3-4 times the recommended 

stocking rates (Shackleton, 1993). For the simulation analysis, 

four areas containing 999, 420, 693 and 928 AVHRR pixels 

respectively were located inside the park (Fig. 1), on the same 

granite-derived soils as occurs in the communal areas, with similar 

rainfall. 

 

2.2 1km AVHRR data 

Local Area Coverage (LAC) (1.1 x 1.1 km resolution) data from 

the AVHRR sensor have been received daily at the CSIR Satellite 



Application Centre in South Africa, since 1985 (for details see 

(Wessels et al., 2004)). Due to the failure of NOAA-13, data were 

not available for 1994.  The time series were processed up to June 

2003 after which AVHRR/NOAA 16 became unstable. 

 

NDVI summed over the growth season (ΣNDVI) is widely used as 

a proxy for net primary production (NPP) due to its positive 

relationship with fraction of absorbed photosyntheticaly active 

radiation (Fensholt et al., 2009; Hellden and Tottrup, 2008; 

Myneni and Williams, 1994; Prince, 1991). ΣNDVI has also been 

shown to be correlated with end of growing season herbaceous 

biomass in Kruger National Park (R2 = 0.42-0.76) (Wessels et al., 

2006). The 10-day maximum value NDVI composites were 

summed for each pixel in the over the growing season, October to 

April (ΣNDVI, n=16, July 1985 to June 2003). 

 

 
 

Figure1. The study area in the Lowveld of South Africa containing 

the communal areas and Kruger National Park  with four areas 

within which degradation was simulated. 

 

 

2.3 Simulated land degradation 

Land degradation was simulated by introducing reductions in the 

AVHRR ΣNDVI according to the following scheme (91 unique 

combinations): 

1. Five intensity levels (10, 15, 20, 30, 40% reduction in ΣNDVI) 

2. Seven rates of development (the specified degradation 

intensity was phased in linearly over 1-7 years, after which the 

reduction was maintained until the end of the time series). 

3. Sixteen start-dates for degradation (years 1-16). 

A single simulation example is given in Fig. 2.  Furthermore, the 

effect of time series length and assessment periods were simulated 

by excluding either the first or last three years of the simulated 

time series before calculating the trend. 

 

 
 

Figure 2. Example of original ΣNDVI time series for Area 2 and 

the same time series containing simulated degradation with 

intensity of 30%, starting in year 9 at rate of 3 years. 

  

2.4 Linear trend analysis 

Degradation is expected to result in a statistically-significant 

negative slope in the  ΣNDVI –time regression  (Anyamba and 

Tucker, 2005; Fensholt et al., 2009; Hellden and Tottrup, 2008; 

Olsson et al., 2005; Wessels et al., 2007). The ordinary least-

squares (OLS) regressions between the ΣNDVI versus time (1-16 

growing seasons) were applied per pixel to each of the 

combinations of intensity, start and rate. The slope of the 

regression, and the associated p-value were the primary analysis 

outputs. 

 

 

3. RESULTS 

 

The most negative slope of the 91 combinations was reported per 

area and intensity in Table 1. For each degradation intensity and 

area, the fraction the 91 combinations where more than 25% of the 

pixels in an area reached a statistically significant (p≤0.05) 

negative slope was calculated (Table 1).   

 

3.1 Degradation intensity   

Without the introduction of simulated degradation there was an 

overall positive trend in ΣNDVI in all four the areas (Table 1) (e.g. 

Fig. 3, top panel). A 20% degradation had to be introduced before 

a negative slope developed in two of the areas (area 1 and 2), 

although the slope was not significant in more than 25% of the 

pixels in these areas (Table 1). It required a 30% degradation 

intensity before all four areas showed a negative slope and a 40% 

degradation intensity before more than 25% of pixels in all four 

areas had statistically significant negative slopes (Table 1). 

 

3.2 Rate and timing of degradation  

The influence of the rate of degradation depended on when the 

degradation was started relative to the middle of the time series. 

When started before the middle of the time-series, the rate had the 

largest influence on the slope when the rate was the slowest.  After 

the middle of the time series, the relationship between the rate and 

the slope was the opposite, i.e., the rate had the smallest influence 

on the slope when it was the slowest (Fig. 3, 2 center panels).  

 

The slopes were the most negative and significant when the 

degradation started in the middle of the time series and these 

negative slopes decreased as the degradation was introduced 

towards the beginning and end of the time series (Fig. 3, bottom 

panel). Overall the trends were the most negative (reported in 



Table 1) when the degradation was introduced within one year and 

in the middle of the time series. 

 

Table 1. The most negative median slope in ΣNDVI  resulting 

from of 91 combinations of intensity, start and rate of simulated 

degradation, for each area (1-4), and the fraction of the 91 

combinations where more than 25% of the pixels in an area 

reached a statistically significant negative slope (p≤0.05). 

 

  ΣNDVI all growing seasons N=16 

Degradation 

intensity (%) 

area Most negative 

median slope 

Fraction >25% 

significant 

0 1 1.29 0.00 

0 2 0.98 0.00 

0 3 1.34 0.00 

0 4 1.26 0.00 

10 1 0.62 0.00 

10 2 0.27 0.00 

10 3 0.75 0.00 

10 4 0.67 0.00 

20 1 -0.06 0.00 

20 2 -0.45 0.00 

20 3 0.16 0.00 

20 4 0.09 0.00 

30 1 -0.75 0.21 

30 2 -1.17 0.51 

30 3 -0.43 0.00 

30 4 -0.49 0.00 

40 1 -1.43 0.58 

40 2 -1.88 0.73 

40 3 -1.01 0.25 

40 4 -1.07 0.32 

 

 

3.3 Length of the observed time series and period of 

assessment  

 

 

When 3 years at the beginning of the time series were excluded, 

stronger negative slopes developed.  In contrast, when years at the 

end of the time series were excluded, weaker negative slopes 

developed, since less of the time series contained the fully phased-

in reductions in ΣNDVI. 

 
 

Figure 3. Example of trends in ΣNDVI resulting from various 

combinations of simulated degradation intensity, rate (in years) 

and start of degradation. 

 

4. DISCUSSION 

 

For this study area, which is fairly representative of the semi-arid 

environments in which much desertification monitoring is 

undertaken, a 30-40%  reduction in ΣNDVI was required  before a 

statistically significant negative slope could be detected in at least 

25-50% of the pixels (Figs 3 and 7). Such a large reduction in 

ΣNDVI can result from radical land cover transformation, such as 

deforestation or expansion in cultivated areas - but the reductions 

associated with the early stages of rangeland degradation (where 

there is some hope of remediation) are much more subtle. Even in 

the worst cases of apparent land degradation in our study area, the 

difference in AVHRR ΣNDVI between degraded and non-

degraded areas was 10 - 20% (Wessels et al., 2007; Wessels et al., 

2004). Although linear trend analysis may be able to identify 

extreme degradation (30% reduction in ΣNDVI lasting several 

years), by the time degradation is that advanced there may be 

limited opportunity to implement mitigating measures.   

 

This casts doubts over the ability of linear trend analysis, applied 

to the AVHRR NDVI, to detect relatively subtle, slowly-

developing degradation in semi-arid rangelands – precisely the 



circumstances and techniques which have been most widely 

applied in the literature (Anyamba and Tucker, 2005; Fensholt et 

al., 2009; Hellden and Tottrup, 2008; Olsson et al., 2005; Wessels 

et al., 2007). The simulations demonstrated that using a 

significantly negative linear trend as an indicator confounds 

magnitude, timing and rate of degradation within a given period of 

assessment, which complicates its interpretation as a mapped 

indicator of degradation.  Degradation which starts close to the 

beginning or end of the time series is especially difficult to 

detected with linear trend techniques (Wessels et al., 2007) (Figure 

3). The period of assessment has a large influence on the detection 

of linear trends. This alerts us to the fact that an assessment of 

trends is only applicable to a particular period and that trends may 

change notably within three years. The start of the time series in 

almost all studies is determined by the beginning of the satellite 

data record, in this case 1985.  The initial years of the time series 

have a strong influence on trend assessments, especially since they 

are often implicitly treated as the reference (pre-degradation) 

period (Veron et al., 2006). Therefore, starting or ending the 

period of investigation 3 years earlier or later results in contrasting 

trends, thus severely complicating year-to-year land degradation 

monitoring. The exact period of assessment thus has a large but 

unpredictable influence on the detected trends. 

 

Although this paper does not yet present a solution for the 

detection of land degradation, it proposed a change in the mode of 

investigation. We suggest that studies should first undertake the 

simulation approach outlined here to establish the robustness of 

their approach before raising either alarm or false hope. In the 

mean time important policy and management decisions should not 

be based on the anecdotal validation of regional trend maps.  
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