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Abstract - A hyperspectral sensor and a full waveform 

LiDAR were flown over a temperate Eucalyptus forest in 

Australia, at the location of the Tumbarumba Ozflux site. 

Ground cover and leaf area index were derived from the 

LiDAR dataset while chlorophyll content maps were 

generated from the hyperspectral imagery using 3D 

radiative transfer models and the structural information 

derived from the LiDAR. These maps were subsequently 

used to replace fixed parameters in land surface models 

(LSM). We used the LSM CABLE-SLI to demonstrate how 

spatial variability in biophysical parameters translates into 

changes in net ecosystem exchange. . 
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INTRODUCTION 

A key focus of research in biogeosciences is the net carbon 

exchange of ecosystems (Running et al, 1999). Such research 

needs the assessment of CO2 fluxes on time scales from hours 

to years and across spatial scales of leaves to ecosystems 

(Baldocchi, 2003).  

Two major approaches that can be used to this aim are, a) 

remote sensing: e.g. the use of simple functions of spectral 

vegetation indexes (SVI) like NDVI or EVI, which relate gross 

primary production (GPP) with SVI; b) modelling: e.g. use of 

land surface models (LSM) that include vegetation dynamics 

and biogeochemistry at several time scales. LSM parameters are 

commonly a mixture of data-constrained parameters (e.g. eddy 

covariance flux data, streamflow and soil moisture data) and 

fixed parameters (e.g. literature values, soil atlas, plant 

functional types). We will use remotely-sensed hyperspectral 

and LiDAR data as spatially highly resolved parameters, as they 

reflect the natural variability and biophysical attributes of the 

vegetation more realistically. 

Direct observations of carbon exchange (ecosystem scale fluxes 

measured with the eddy covariance method) are also needed to 

validate estimates derived from remote sensing and LSM. Due 

to nonlinearities in LSMs, calculated fluxes will be in error if 

parameters for the component parameters are simply averaged 

in proportion to their areal fraction (Wang et al. 2001). 

However, we hypothesise that the use of source area weighted 

model output will decrease residuals of modelled and measured 

fluxes.  

Quantitative remote sensing using airborne hyperspectral and 

LiDAR sensors can provide spatially extensive information in 

three dimensions about biophysical parameters which are linked 

directly to physiological processes that control carbon and water 

exchanges in vegetation. The high spatial resolution of these 

sensors can deliver maps of these driving factors and 

appropriately account for disturbance effects or heterogeneity.  

We propose the combined use of high spatial resolution 

hyperspectral imagery and LiDAR data in order to derive fine 

resolution maps of the LSM input parameters. In this case we 

will focus in the estimation of the photosynthetic capacity in the 

form of the maximum carboxylation rate (Vcmax,0, where 0 stands 

for “normalized to standard temperature”) and the potential rate 

of electron transport (Jmax,0); as well as LAI and fCover as 

structural parameters related with radiation interception. We 

have used maps of those parameters into the CABLE-SLI model 

and generated a map of the net ecosystem exchange (NEE). 

MATERIALS 

Study area 

The study area is situated in Bago State Forest, NSW, Australia  

35°39'23.89"S, 148° 9'6.02"E, elevation 1200 m). At the center 

of the study area is Tumbarumba flux tower which has been 

operational since 2001 (see van Gorsel et al. these proceedings 

for further details on the study site). The surroundings of the site 

have been subject to selective logging and partial logging 

(selective logging and interspersed clear fell logging of 0.5 ha 

areas) during the recent past.  

Airborne data 

A full waveform LiDAR (LMS-Q560, Riegl Laser 

Measurement Systems GmbH, Austria) and a hyperspectral 

imager (AISA Eagle, Spectral Imaging Ltd, Finland) were flown 

over the study site on November 7th and 9th 2009. The 

instruments were flown and operated by Airborne Research 

Australia (ARA, Flinders University) on board an Eco-Dimona 

aircraft, which allows for low flying altitudes and speeds. The 

hyperspectral sensor acquired 252 spectral bands from 400 to 

990nm with approximately 2.5nm of bandwidth (FWHM) and 

delivered a spatial resolution of 1m at the flight altitude of this 

flight (400m AGL).  

Ground data 

At the time of the flight different calibration targets were 

measured with a field spectroradiometer (ASD Fieldspec Pro, 

USA). 

Hemispheric photos were taken at 30 plots around the tower 

within a circular area of 1 km radius. At each location five 

photos were taken. One at a central point and one in 17.5 m 

distance towards N, E, S and W. The camera was mounted on a 

tripod with a gimbal at 1.4m height. The camera used is a Nikon 

Coolpix 950 with a FC-E8 fisheye lens. The images were 

processed with CANEye V5.0 (Weiss et al, 2004).  
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METHODS 

Hyperspectral and LiDAR processing 

The hyperspectral images were corrected atmospherically using 

the irradiance model SMARTS (Gueymard, 2001) and 

calculating the reflectance as the ratio between the radiance and 

the irradiance integrated for the whole hemisphere. The inputs 

for the model (AOD@500nm and equivalent water content) 

were retrieved from the AERONET station in Canberra, 100km 

East of Tumbarumba. The calculated reflectance was compared 

with field measurements at the time of the flight and the overall 

spectrum matched well the field measurements except in the 

atmospheric water absorption band (970nm). For this reason the 

water content was inverted adjusting the value of the parameter 

until the error in the reflectance for that band was minimized. 

The final error in the whole reflectance was 2-3% for the 

different targets measured with the ASD. 

The LiDAR data was processed in ENVI (ITTVIS, USA) using 

the BCAL LiDAR toolkit. The first step was the classification 

of the point returns into vegetation and ground returns. The 

linear filter was used and all the returns higher than 60m were 

filtered out since they were considered outliers. Once the points 

are classified, the following raster products were generated: 

digital terrain model (DTM) of the bare ground; maximum 

vegetation height; binary map of the vegetation higher that 1m 

for fractional cover calculation (fCover). The datasets were 

resampled into a 100x100m2 grid size for its use into the 

modelling and for computational reasons. 

Radiative Transfer Modelling 

The PROSPECT5 (Feret et al., 2008) radiative transfer model 

(RTM) allows simulating the leaf reflectance and transmittance. 

Inputs include the leaf cellular structure (N parameter) and the 

leaf biochemistry e.g. chlorophyll concentration (Cha+b), 

carotenids (Car), equivalent water content (Cw) and specific 

density (Cm). 

This model can be coupled to a canopy scale RTM which 

simulates the light scattering within the canopy. In this case the 

3-D Forest Light Interaction Model (FLIGHT) was chosen. 

FLIGHT is based on Monte Carlo ray tracing (MCRT) method 

as a tool to simulate the radiative transfer in a canopy structure 

(North, 1996). FLIGHT model inputs consist of: (i) geometric 

characteristics: shape, height, radius, leaf angle distribution 

(LAD), leaf area index (LAI) and position of every single crown 

in the scene as well as trunk diameter (DBH); (ii) spectral 

signatures: soil-, green leaf-, senescence leaf-, bark spectra; (iii) 

sun and view zenith and azimuth angles; and (iv) other 

parameters such as soil roughness, aerosol optical thickness and 

the number of photons simulated. The output of the model 

simulation is a multispectral image with a given number of 

bands. Fig. 1 shows examples of three different FLIGHT 

simulations corresponding to different values of LAI and Cha+b 

concentrations. 

In this work, the FLIGHT model was used together with 

PROSPECT to simulate the canopy reflectance. Average tree 

density and crown dimension were extracted from the 

vegetation height image derived from the LiDAR. The solar 

geometry corresponded to the date and time of the flight (solar 

zenith=23° and solar azimuth=124°). 

   

Figure 1. Examples of PROSPECT5+FLIGHT simulations with 

different input values. a) Cha+b=30, LAI=1.5; b) Cha+b=30, 

LAI=2.5; c) Cha+b=40, LAI=3 

Land surface modelling 

CABLE-SLI was chosen as the land surface model used in this 

study. This model is a combination of CABLE (Community 

Atmosphere Biosphere Land Exchange model, (Wang et al., in 

press) and SLI (Soil-Litter-Iso). CABLE combines a two-leaf, 

sun-shade canopy model developed by Wang and Leuning 

(1998), a model for surface roughness and aerodynamic 

resistance developed by Raupach et al (1997). Litter-Iso is a one 

dimensional model for coupled transport of heat, water and 

stable isotopes in soil with a litter layer and root extraction 

(Haverd and Cuntz, 2010). 

RESULTS AND DISCUSSION 

A total number of 944 simulations of PROSPECT5+FLIGHT 

were created from the combination of parameters shown in 

Table A. The values were selected for a range of previously 

studied eucalypt species (Barry et al, ). 

 

Table A. Nominal values of the input parameters used in the 

simulations of FLIGHT+PROSPECT 

 

PROSPECT INPUTS 

Leaf Structural Parameter N 1.45,1.7,1.95 

Chlorophyll a+b concentration 

(µg/cm2) 

Cha+b 20,23.3,26.7,30

,33.3,36.7,40 

Carotenoids concentration (µg/cm2) Car 7.5,10,12.5 

Equivalent water content (cm) Cw 0.017 

Leaf dry matter content (g/cm2) Cm 0.017 

 

FLIGHT INPUTS 

Crown dimensions (m) 5.5,3.5,12.5 

fCover 0.7 

LAI 1,1.5,2,2.5,3 

DBH (m) 0.9 

Solar Zenith Angle  (º) 26.9 

Solar Azimuth (º) 127 

Bands (nm) 490,550,670,710,750,800 

 

The simple ratio of the reflectance at 750 and 710nm 

respectively (ρ750/ρ710) is recognized as good indicator of 

chlorophyll content at leaf level (Zarco-Tejada et al., 2001), 

however that index is highly affected by structural effects and 

doesn’t perform equally well at canopy level. In order to assess 

the effects of the structure in this index, the spectra resulting 

from the simulation of PROSPECT+FLIGHT were compared 

with the input value of Cha+b (figure 2). The index shows a very 

good linear relationship between Cab and ρ750/ρ710, however 

different values of LAI have a different slope and intercept. The 

result therefore is a family of regressions with the following 

equation: 

 



  (1) 

 

Where a and b are functions of the LAI. 
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Figure 2. Relationships between the simulated reflectance 

ρ750/ρ710 and Cha+b for different LAI values. 

The terms a and b both exponentially decrease with LAI. (figure 

3),  

a = 85.45 LAI-0.862

R² = 0.9944

b = 102.94 LAI-0.851

R² = 0.9951
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Figure 3. Relationship between LAI and the slope (a) and 

intercept (b) of the relationships between ρ750/ρ710 and 

different values of LAI. 

 

Combining the regressions for a and b with equation (1), results 

in the following equation for the estimation of Cha+b: 

 

 (2) 

 

The use of the reflectance ratio in combination with the LAI 

resulted in an improvement of the estimates of Cha+b. The 

regression of the input Cha+b against Cha+b calculated with 

equation (2) had an r2=0.96 and RMSE=1.31µg/cm2. In 

contrast, the results using the simple ρ750/710 ratio are r2=0.32 

and RMSE=5.5 µg/cm2. 

 

The analysis of the digital hemispherical photography (DHP) 

showed a very good correlation between fCover and the 

effective LAI calculated with CANEye (figure 4). Additionally 

the validation of the fCover from the DHP and the fractional 

cover calculated with the LiDAR shows a r2=0.4 and a slope 

very close to one (slope=1.028 and intercept=0.08, n=26). 

However, direct relationships between LAI from DHP and 

LiDAR derived indices like the ratio of returns from high and 

total point returns showed low correlation coefficients. This is 

due to the difficulties of getting high accuracy GPS readings 

within the forest. We suspected that the GPS position of the 

DHP stations may differ with the actual position where the 

images were taken. 

 

The resulting map of effective LAI (figure 5) shows the 

heterogeneity in the area. The areas in the Northwest have 

recently been partially logged and have lower LAI while the 

areas in the Northeast with higher values of LAI are 

undisturbed.  
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Figure 4. Relationship between the fractional cover (fCover) 

and the leaf area index (LAI) for the different stations of the 

hemispherical photos (n=26). 
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Figure 5. Map of effective LAI calculated from the LiDAR data 

and scaled to 100m of grid size. 

A map of Cha+b (not shown) was calculated combining the map 

of LAI from the LiDAR and the ρ750/ρ710 reflectance ratio 

from the hyperspectral imagery using the equation (2). We used 

a simple linear relationship (, derived from leaf level 

measurements, to scale from Chla+b to Vcmax,0. Figure 6 shows 

the map of Vcmax,0 with 100m of grid size. The pattern is very 

similar to the distribution of LAI and the areas that have been 

recently logged show also lower chlorophyll content. However, 

we noticed that some areas that were partially logged some 

years ago and have grassy understorey, have low levels of 

Cha+b.. The cause for this is that the simulations were done with 

a given fractional cover (0.7) and bare soil as background. A 

more elaborated set of simulations with a wider range of fCover 



and background reflectances will likely improve these results.  
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Figure 6. Map of Vcmax,0 calculated from the chlorophyll content 

and scaled to 100m grid size. 

CABLE-SLI estimated CO2 fluxes at the 2.392 grid elements 

using LAI and Vcmax,0 as spatially variable inputs while the rest 

of the parameters were set to their default values. The resulting 

map (figure 7) of net ecosystem exchange (NEE) shows a 

similar pattern as the LAI and Vcmax,0 maps, with negative 

values where the light interception and photosynthetic capacity 

are higher while there are areas around the logging patches 

where the NEE is positive (i.e. where CO2 is released into the 

atmosphere).  

 

Figure 7. Net ecosystem exchange (NEE) calculated with 

CABLE-SLI using the maps of LAI and Vcmax,0 as input 

parameters. 

CONCLUSIONS AND OUTLOOK 

A combination of radiative transfer modelling and LiDAR and 

hyperspectral imagery allows for independent estimates of 

biophysical parameters like LAI and pigment concentration. 

Fused airborne LiDAR an hyperspectral data therefore have the 

advantage that, given that they base on completely different 

physical principles, can be used to constrain each other. 

Traditionally the problem of passive remote sensing has been 

scaling from leaf level to canopy and dealing with the structural 

effects in the reflectance. In this case, the radiative transfer 

models can account for the effects of the structure and allow 

developing relationships where structural parameters like LAI 

or fCover are inputs in the same way as the reflectance is.  

Validation of the preliminary results shown in this 

communication is required. The validation will be performed at 

different scales and along the steps outlined in the methodology 

presented here. 

The use of maps of the input parameters that drives the land 

surface models is a very valuable tool when it comes to 

understanding the effects of heterogeneity of the underlying 

landscape in the observations of eddy covariance towers. The 

combination of spatial based techniques with the right space-

temporal scaling methodologies like footprint modelling and 

sensibility analysis (van Gorsel et al, these proceedings) will be 

something done routinely in the future.  
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