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Abstract – We are developing onboard processor technology 

targeted at the L-band SAR instrument onboard the 

planned DESDynI mission to enable formation of SAR 

images onboard opening possibilities for near-real-time data 

products to augment full data streams.  Several image 

processing and/or interpretation techniques are being 

explored as possible direct-broadcast products for use by 

agencies in need of low-latency data, responsible for disaster 

mitigation and assessment, resource management, 

agricultural development, shipping, etc.  Data collected 

through UAVSAR (L-band) serves as surrogate to the future 

DESDynI instrument.  We have explored surface water 

extent as a tool for flooding response, and disturbance 

images on polarimetric backscatter of repeat pass imagery 

potentially useful for structural collapse (earthquake), 

mud/land/debris-slides etc.  We have also explored building 

vegetation and snow/ice classifiers, via support vector 

machines utilizing quad-pol backscatter, cross-pol phase, 

and a number of derivatives (radar vegetation index, 

dielectric estimates, etc.).  We share our qualitative and 

quantitative results thus far.  
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1. INTRODUCTION 

The planned Deformation, Ecosystem Structure and Dynamics 
of Ice (DESDynI) mission would collect an enormous amount of 
data using a repeat pass Interferometric Synthetic Aperture 
Radar operating at 1.2 GHz (L-Band) and full polarimetric 
mode, generating images of resolution better then 10m pixels 
over swaths 240km in range (Desdyni 2011).  For many years to 
come this data should prove valuable to scientific research with 
respect in areas improving our understanding of earthquakes, 
volcanic activity, landslides, dynamics of ice-sheets in our 
rapidly changing environment and how our climate is 
interrelated with terrestrial biomass.  In the short term, these 
same data could have immediate utility for disaster 
management, resource management, and other agencies working 
within time restrictions and data-processing limitations.  For 
example an invaluable tool for emergency responders in a flood 
situation would be a surface water extent map.  

As an associated piece of this work, JPL has developed a 
hardware approach for processing raw polarimetric L-band SAR 
data based on Xilinx Virtex series FPGA (Lou 2010).  This has 
been deployed on the Uninhabited Aerial Vehicle Synthetic 
Aperture Radar (UAVSAR), an airborne radar system typically 
flying at altitudes of ~14000 meters along a computer controlled 
flight tube of 10m diameter while electronically steering a L-
band  radar, generating images of nearly 2m resolution before 

multilooking (UAVSAR 2010).   The hardware processor is 
designed to be compatible with both UAVSAR and the radar 
proposed in DESDynI, allowing SAR image formation of 10m 
resolution in near-real-time, and subsequent analysis on those 
data.  

We have identified several applications areas to explore data 
processing and classification results under conditions feasible 
for a space-born platform: surface water extent mapping for 
flood applications, coarse vegetation classification for resource 
management and/or fire monitoring, snow/ice/land classification 
for transportation management or water resource management 
and finally repeat-pass disturbance processing for landslide 
mitigation and monitoring.   

In each of these applications latency between data acquisition 
and delivery, and actual coverage of region-of-interest are of the 
utmost important to the end-user.  DESDynI‟s future mission 
would be downlink constrained; onboard processing could 
condense these data through image formation and classification, 
allowing for urgent and last minute requests that would 
otherwise not fit in the schedule. Onboard processing coupled 
with direct-broadcast could further alleviate latency. 

2.1 REPEAT PASS DISTURBANCE DETECTION 

Our first and possibly simplest product presented here is a 
simple composite of radar backscatter returned between two 
scenes on a 0-baseline. This is intended as a tool for an expert 
familiar with radar signatures to identify expanses of disturbance 
or change over the temporal baseline.   

UAVSAR collected data along the San Gabriel Mountain range 
both in February 2009 and September 2009 using the same flight 
path to within 10 meters accuracy, covering portions of the 
Angeles National Forest which suffered the 160,000 acre fire 
from late August 2009 through October 2009, costing $95 
million in containment (USDA 2009).  In Figure 1 backscatter 
image data from the initial flight has been used to color red 
intensity, while blue/green used to color the later flight.  Figure 
2 shows the same data, but with differences of 3dB or more 
highlighted red/green for vegetated/non-veg areas (prior to 
burn).  Figure 3 shows a burn scar image generated from 
ASTER data acquired September 6th, 2009, with an approximate 
outline of the UAVSAR data product (Allen 2009).   
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Figure 1. Composite of repeat-pass HH backscatter images from 
Feb. 2009 (blue) and Sept. 2009 (red) 

 

Figure 2. Repeat pass change in backscatter >3db.  Red for 
vegetated areas (NLCD2001) and green for non-vegetated. 

  

Figure 3.  ASTER image enhanced to contrast vegetation (red) 
and fire-scar (black/grey) (Allen 2009). 

In comparing Figure 2 and 3, distinguisable areas with 
remaining vegetation as seen in the ASTER data coincide well 
with regions of non-disturbance in the UAVSAR composite 
image (e.g. see „boot-like‟ feature top-center of Figure 2).  We 
have no quantitative results to post at this time but have other 
examples, such as wetland drainage, and hope to generate 
similar results for landslides and urban disturbance (Haiti).   

2.2 SURFACE WATER EXTENT 

Our next algorithm is slightly more complex in-so-far as 
analysis is concerned when compared to the disturbance images 
discussed above, but requires only a single overpass of data to 
generate its estimation of surface water extent mask.   

Water‟s strong dielectric constant is rarely seen on the earth‟s 
surface by other materials of common abundance (i.e. entire 
10m x 10m pixel areas) and thus makes it a good quantity for 
classification.  We use empirical estimations of the dielectric 
constant from polarimetric backscatter returns as reported by 
(Dubois 1995) and approximated with equation 1 where ș is the 
local incident angle and  is the radar wavelength in cm:  

  

(1)  

We also used filtering for vegetated areas (and thus inapplicable 

for the dielectric estimation by eq. 1) pixels with .  

Experimentation of varying a dielectric threshold to classify 
water vs non-water yielded a good threshold of 15.  As a proxy 

for surface water as seen in a flood, we have used the water class 
of NLCD2001 land cover data (US.EPA 2011) in estimating this 

threshold and generating cross validation results.  Table 1 
summarizes results in a confusion matrix as generated from 

applying this algorithm to approximately 10 scenes of UAVSAR 
data collected over the Florida Everglades on June 16 2009.  

Table 1. Classification breakdown of surface water extent 
classifier, vs NLCD2001 data. 

NLCD Classified: not water water   count

wetland woody 98% 2% 41509483

water 19% 81% 17490057

wetland emergent herbaceous 91% 9% 11799208

urban open space 99% 1% 77507

urban cleared 96% 4% 69834

forest evergreen 100% 0% 46719

urban moderate intens 96% 4% 14897

low barren land 64% 36% 11444

urban intense 93% 7% 1928

low grassland 87% 13% 1581  

While fairly precise accuracies are achieved against the woody-
wetland class, the dominant class in the region of our study, the 
water class shows significant false negatives that we suspect are 
the result of surface roughness effects (Bragg scattering), a 
component left unaccounted for in our dielectric estimation.  
Figure 4 is an example of such a classification map, largely 
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correct, but with some streaks of these false negatives in the 
open water region.  Future work may include effort to 
characterize conditions for this misclassification and/or whether 
this effect is relevant to actual flooding scenarios.   

 

Figure 4. Surface water extent map of Florida Everglades. 
White: water, black: non-water Dark streaks on left are false 

negatives (assumed from surface roughening from wind). 

2.3 VEGETATION CLASSIFICATION 

The feasibility of generating a vegetation classification scheme 
using our real-time L-band SAR data has been studied using a 
multi-class support vector machine (SVM).  Using UAVSAR 
data collected over forested and wetland areas of Maine and 
Vermont, spread out over approximately 12 days of varying 
weather, we trained a support vector machine using land cover 
maps from NLCD2001 with classes collapsed down to 7 coarser 
vegetation classes: dense (forest), herbaceous wetland, forested 
wetland, medium (shrub), low (grass), bare land and water.  
Approximately 5000 training samples (pixels) were chosen at 
random across the Maine dataset and included features of 
backscatter for HH, VV, HV, HHVV phase, 7x7 pixel averages 

Table 2. Confusion matrix for vegetation classification vs 
NLCD2001 condensed classes, evaluated over ~15 30kmx30km 

images from Maine and Vermont 

Class i fier results :

NLCD 1000 2000 2100 2200 3000 4000 count

water 1000 54% 4% 2% 19% 11% 10% 682,069      

dense veg (forest) 2000 0% 46% 21% 12% 11% 10% 16,382,691 

wetland (herbaceous) 2100 1% 31% 30% 17% 12% 10% 1,936,352   

wetland (woody) 2200 6% 18% 17% 24% 17% 19% 478,129      

moderate veg (shrub) 3000 3% 26% 15% 13% 20% 23% 450,214      

l ight veg (grass ) 4000 8% 19% 10% 18% 19% 26% 51,743        

urban 5000 5% 16% 8% 27% 23% 21% 323,258      

urban (low intens i ty) 5100 6% 19% 9% 21% 22% 22% 519,914      

developed (open space) 5200 3% 28% 13% 16% 20% 20% 775,630      

 Total  Accuracy:  8668968 / 19981198 (0.433856)  

 and variance of some of these quantities for 19 total features.  
Training yielded ~900 support vectors using a Guassian radial 
basis kernel.  

Table 2 shows fairly poor classification performance when 
compared against NLCD2001 data, with the best accuracy at 
54% for the water class of which 19% were misclassified as 
woody wetland, while dense vegetation had the next best 
accuracy of 46%, with 21% misclassified as herbaceous 
wetland.  These figures are fairly underwhelming, however 
qualitative inspection of results look more promising and draw 
doubt upon our validation set.  Figures 5a and 5b show the 
contrast in NLCD2001 ground truth to classifier output, while 
optical imagery in figure 5c shows a better visual correlation 
with the classifier output – of note is the abundance of light 
vegetation (open spaces or grassy areas, brown) consistent with 
the output, opposed to the majority of dense forest indicated in 
the ground truth in figure 5a.  We suspect the NLCD2001 data is 
ultimately too noisy for training and validation purposes either 
because of age, resolution/aliasing artifacts (NLCD2001 is 30m 
resolution while UAVSAR is better than 10m allowing for 
individual tree crown identification) or other general fidelity 
problems.  Future work will identify better land cover data and 
investigate improvements in cross-validation, while at the 
moment we find it interesting that with this potentially noisy 
dataset we obtain results that compare well, at least qualitatively 
with more recent optical data.  

 

Figure 5.  Vegetation classification data for scene in Maine, 
collected Sept 2009.  (a) NLCD2001 land cover map, (b) 

classification results, (c) optical imagery courtesy Google Earth.  
Color scheme for (a) and (b), black: water, dark-gray: dense veg 
(including wetlands), gray: moderate veg, light-gray: light-veg, 

white: developed areas 

Finally we would note that the resulting SVM, with ~900 
support vectors would be too complex to be run on an in-flight 
platform.  We anticipate replacing noisy training data with more 
accurate data would result in a reduced set and better cross-
validation results.  Other approaches to reach a feasible 
computation time would include a hardware based SVM 
evaluator or reduced set SVM (Tang 2006) or progressive SVMs 
(Wagstaff 2010).   

2.4 SNOW/ICE CLASSIFICATION 

We again employ a support vector machine to classify pixels of 
ground projected data using the same feature set as presented in 
section 2.3 for vegetation classification, but with target classes 
of snow or ice versus land versus water.  Data collected over 
Iceland‟s Hofsjokull on Jun 12th 2009 together with various 
optical remote sensing data including Landsat7 taken May 16 
2009 (Figure 6a) to serve as our training and validation data, and 
ground truth.  Given the time of year, and large temporal 
separation between the optical and UAVSAR data collection, we 
generated a conservative hand labeled training and validation set 
(Figure 6b), taking into consideration late-summer data to find a 
year-round snow pack.  Training on ~300 randomly sampled 
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pixels from the hand-labeled set resulted in the classification 
image of Figure 7, and the confusion matrix in Table 3. 

 

Figure 6. On left (a) Landsat7 band 1 image collected 2009-05-
16, snow and ice from Hofsjokul on right, and seasonal snow on 
volcanic peak at center top.  On right (b) is a conservative hand-
labeling, water: blue, land: orange, snow/ice: gray, red: no-data. 

 

Figure 7. Result of Snow/Ice SVM classifier: pink: land, dark-
gray: water, gray-blue: snow/ice 

Table 3. Confusion matrix of snow/ice classifier against hand 
labels, data collected Jun 12th 2009. 

water ice land   count

no label 7% 10% 83% 16.7M

water 91% 3% 6% 145884

ice 3% 90% 7% 440706

land 1% 2% 96% 311201

 Total Accuracy:  829007 / 897791 (0.923385)  

Overall classification accuracies (>90%) are much improved as 
compared to the vegetation classifier and the number of support 
vectors dramatically reduced (~50) potentially allowing for in-
flight evaluation on traditional processor architectures.   

3. CONCLUSIONS 

We have presented results of 4 near-real-time products aimed at 
providing useful and timely information for managing agencies 
from L-band Polarimetric SAR data.  The simple repeat pass 
composite image would require knowledge for interpretation 
and onboard storage, however it has shown to be useful at least 
for fire-damage assessment.  Our surface water extent algorithm 
shows useful accuracy as compared to NLCD2001 over the 
everglades; its inaccuracies due to wind action on surface 
roughening are left to be investigated as problematic for actual 
flooding scenarios.  Of our support vector machine classifiers, 
the vegetation classifier requires significant processing and 
provides inaccurate results based on NLCD2001 but hints at 
better results through higher fidelity ground-truth, while the 

snow and ice classifier shows good results thus far on our 
limited set of data.  
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