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Abstract – Earlier research results have shown some 

potential of using high resolution satellite data, like 

QuickBird, for sea floor classification, but the number of 

bands have been a limiting factor. In this paper we present 

the results of a preliminary study of the use of WorldView-2 

data for benthic cover classification in the Swedish 

archipelago. WorldView-2 is the first high-resolution 8-

band multispectral commercial satellite. We have explored 

the use of this better spectral resolution in combination with 

high-resolution depth data for mapping of sub-surface 

environments. Our results indicate that a method using high 

resolution imagery, preferably WV-2 or similar, together 

with bathymetry data can be used for sea floor classification 

in the Swedish archipelago. Our method includes 

atmospheric and water corrections of the satellite imagery. 

The corrected data are subsequently used for classification 

of the bottom.  
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1 INTRODUCTION 

 

The general purpose of the study is to develop remote sensing 

methods that can be efficient tools for investigations of large 

aquatic areas. In Sweden, large efforts are spent on 

environmental mapping and monitoring for the purpose of 

assessing ecosystem status and monitoring the fulfillment of 

national environmental goals and international agreements. 

However, there is still a lack of information for understanding 

ongoing changes in nature, as well as relationships between 

species and their habitats. Maps of sea bottom habitats are 

practically non-existent. Access to information about the extent, 

location and rate of change for different habitats is especially 

important in a time when anthropogenic influences are rapidly 

changing the environment.  

 

The specific purpose of our study is evaluate a method using 

WorldView-2 image data together with high resolution depth 

data from airborne bathymetric lidar for classification of bottom 

vegetation and substrates. The lidar data is used for correction 

of the image for bottom depth and water turbidity. The 

corrected image data is used in classification tests with a 

classification model compiled from training data from field 

observations with underwater video. We compare the 

classification accuracy obtained with conventional (red, green) 

color bands to the result with an additional yellow band which 

is available in the WorldView-2 high-resolution satellite 

imagery. In this study we present our preliminary results from 

classification into five classes (Sand, Potamogeton, 

Filamentous algae, Fucus, and Soft sediment) within a small 

area of a WorldView-2 image. 

2 METHODS 

2.1 Test Site and Field Data 

The investigated test site is located around Askö, an island in 

the archipelago 80 km south of Stockholm in the north-western 

Baltic Sea (Figure 1). The waters and archipelago around Askö 

is of scientific interest and Askö Laboratory – a centre for 

marine a marine field station belonging to Stockholm Marine 

Research Centre (SMF) is located on the island. The subsurface 

environment is diverse and rich in species. Valuable seabeds of 

pondweed (Potamogeton perfoliatus) and a large number 

of species varying in composition with respect to substrate can 

be found, as well as large areas of bladder wrack (Fucus 

vesiculosus) and sea clam.  

 
Through off-line analysis of underwater video, together with 

GPS data, the abundance of species and other sea floor 

characteristics were estimated along several swaths in the area. 

The majority of the underwater video data were captured in 

May 2010. 
 

 
Figure 1. Test site in the Baltic on the east coast of Sweden 

(marked with a square in the inset figure).  

2.2 Satellite Data 

The WorldView-2 data used in the analysis was collected at 

12:13 on the 2nd May 2010. WorldView-2 generates images 

with a spatial resolution of 0.5 m in panchromatic mode and 2.0 

m in multispectral mode. Eight sensor bands are available; 4 

standard colors: blue, green, red, near-IR 1 and 4 new colors: 

coastal, yellow, red edge, near-IR 2. In our study, we have used 

information from the multispectral bands 3, 4, and 5 (yellow, 

green, and red), which after an initial analysis were found to 

have useful signals down to about 5 m bottom depth while the 

other bands were strongly limited in depth range.   

 

The image was geometrically corrected using 0.5-meter 

orthophotos as base reference and the derived RMSE was below 

pixel size. The image was then radiometrically calibrated, i.e. 

the raw numbers (DNs) have been converted to the top-of-

atmosphere radiation, and atmospherically corrected using 6S 



(Vermote et al., 1997). The output from 6S is ground 

reflectance and the atmospheric effects have been removed. 

Finally, a correction was made to reduce the effects of surface 

reflected skylight and solar glint. Earlier work has shown that 

this glint pattern, considerably make the analysis more difficult 

by blurring and concealing the appearance of the sea floor. By 

correcting for these effects a better representation of the bottom 

can be derived (Hochberg et al., 2003). An image based 

procedure to perform these corrections has been assembled by 

Claudia Giardino, CNR [Pers. Comm.] and were applied to the 

image. The algorithm uses the near infrared band to define the 

glint level and downwelling total irradiance and diffuse 

irradiance are estimated by the 6S code and used as input. The 

reflectance values for breaking waves and objects above surface 

are no longer valid after the correction. After the correction, the 

glint effects were decreased but not completely eliminated, 

reflectance values in the open water should thus be treated with 

caution. The output after the correction is the remote sensing 

reflectance 

 

( ) ( ) ( )λλλ dwrs ELR /= .   (1) 

 

where ( )λwL  is the upwelling radiance leaving the water and 

( )λdE  the downwelling irradiance incident on the water for 

each wavelength band λ. 

2.3 Lidar Data 

The depth data used in the analysis were collected with the 

HawkEye II – Airborne coastal survey system (Airborne 

Hydrography AB, http://www.airbornehydro.com). The Hawk 

Eye II system surveys both land and sea floor simultaneously 

using two separate lasers emitting at wavelengths 1064 nm 

(NIR) for topography and at 532 nm (green) for bathymetry. 

The nominal flight altitude ranges from 250 m to 500 m and the 

swath width is between 100 m and 330 m. The bathymetric 

sounding spot density is between 0.1 and 0.35 soundings per 

m2, and between 1 and 4 soundings per m2 for the topography 

lidar, both depending on flight altitude and swath width. Our 

work includes only the bathymetric data from the system.  

 

Our results are based on lidar data from a survey in May 21, 

2010. The maximum depth range of the lidar data was about 10 

m. In the lidar data set, the depth data consisted of a point cloud 

with average point density of approximately 0.3 soundings per 

m2 corresponding to a horizontal distance of 1.8 m between 

each lidar data point. The lidar data was gridded and 

geometrically corrected to the same grid-scale as the corrected 

multispectral WorldView-2 image. 

2.4 Correction for Water Depth and Turbidity  

We have applied a method for correction of the WorldView-2 

data using the bottom depth in each pixel. We write the remote 

sensing reflectance 
RSR  for each wavelength band λ  as 
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where  ( )λb

RSR  and ( )λw

RSR  are the components reflected from 

the bottom and from backscattering from the water column 

respectively. We write the contribution from the bottom signal 

as 
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where ( )λρ  is an estimate of the bottom reflectance, Cb a 

calibration factor, D the bottom depth, ( )DK d ,λ  the vertically 

averaged downwelling diffuse attenuation coefficient from the 

water surface to depth D, and ( )∞,λdK  the asymptotic diffuse 

attenuation coefficient. The calibration factor Cb can be used to 

calibrate to actual values of the bottom reflectance e.g. from 

field measurements of reflectance. Due to the scattering in 

water, Kd increases with depth which is an effect of the altered 

angular distribution of the downwelling light (Kirk, 1994). The 

increasing value of  Kd levels off at that optical depth at which 

the asymptotic radiance distribution becomes established.  We 

developed approximate equations for ( )DK d ,λ  and ( )∞,λdK  

with numerical simulations using a lidar simulator (Tulldahl & 

Steinvall, 2004) to 
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for 0 m < D < 10 m, and 
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where a(λ) is the absorption coefficient and 
wθ  the subsurface 

solar zenit angle. The simulations which were the base for Eqs. 

(4) and (5) concern typical Baltic coastal water types (Steinvall 

et al., 1994) with 0.13 m-1 < a < 0.35 m-1, and should be 

considered as preliminary models which require adjustments 

and improvements, e.g. for different water types with different 

scattering properties. 

 

We estimate the contribution to
RSR  from light reflected from 

the water column to 
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where bb is the water backscattering coefficient, and Cw a 

calibration coefficient which can be used e.g. for calibration 

against field measurements of the water optical properties. I our 

preliminary work, we have not yet compared estimates of the 

bottom reflectance or the water backscattering coefficient to 

field measurements of these parameters. Eq. (6) is further 

approximated to 
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for the case when ( )DKd ,λ  is assumed to be a constant from the 

water surface (z = 0) to the bottom depth D.  

 

We developed an algorithm for inversion of WorldView-2  data 

and bottom depth to water optical parameters a and bb and 

bottom reflectance ρ in the WorldView-2 multispectral bands 

(Bands 3-5). In brief, the algorithm tests numerical values for 

the parameters  a, bb , ρ, that minimize the RMS error 
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http://www.airbornehydro.com/


between the atmospherically corrected WorldView-2 remote 

sensing reflectance 
RSR  and the model for b

RSR  and w

RSR  

according to Eqs. (3)-(5) and (7). The summation in Eq. (8) is 

taken over the wavelength bands λ and over spatially limited 

regions in the dataset, with each region having a total number n 

of pixels p. After the numerical estimation of the water optical 

parameters a(λ) and bb(λ), a manual fine-tuning of the 

parameters were made over  regions in the image, and finally 

a(λ) and bb(λ) for the whole test site were generated by 
interpolation from the estimated values in the selected regions. 

The correction of image data for water attenuation was then 

made pixelwise by solving the system of equations Eqs. (3)-(5) 

and (7) for ρ(λ)Cb using the estimated values of a(λ) and bb(λ) 
and depth D from lidar data. The resulting water-corrected 

image thus contains estimated values which are proportional to 

the bottom reflectance in the WorldView-2 bands. 

2.5 Classification 

The corrected image data obtained with the methodology 

described above was subject to a classification analysis. Based 

on field data, five classes were defined: Sand (bare sand, cover 

100 %), Potamogeton (Potamogeton pectinatus or Potamogeton 

perfoliatus > 75 %), Filamentous (mainly Pilayella littoralis > 

75 %) Fucus (Fucus vesiculosus > 75 %), and Soft (soft 

sediment with < 25 % vegetation cover). A number of regions 

were selected in the image and used as training data. Figure 2 

shows a scatter plot of water-corrected band intensities, i.e. 

ρ(λ)Cb in Eq. (3), for Bands 3-5 for each class. A quantitative 

measure of the separation of the clusters was performed by a 

test classification of the same (training) data, i.e. by internal 

evaluation of the classification accuracy. The data was modeled 

as a multivariate Gaussian distribution for each class, and a 

subsequent maximum likelihood (ML) classification was 

performed. The ML classification was achieved by allocating 

each pixel to its most likely class of membership.  

3 RESULTS AND DISCUSSION 

The resulting confusion matrix for water-corrected data using 

three sensor bands is shown in Table 1 and corresponds to an 

average User’s Accuracy (UA) of 82 % and average Producer’s 

Accuracy (PA) of 87 %. For comparison with a conventional 

image sensor (red, green, blue) we made a two-band 

classification test using only the red and the green bands (Bands 

5 and 3). We recall that the blue band is of limited use in the 

Baltic water type. The resulting average accuracy for the two-

band classification was 73 % (average UA) and 75 % (average 

PA). Most notably was the lower accuracy for the Potamogeton 

class which was evaluated to only 40 % (UA) for two-band 

classification, compared to 70 % for three bands. In the two-

band classification, the Potamogeton class was mainly confused 

with the Filamentous class. The significantly better 

performance with three-band classification can be explained by 

the fact that the WorldView-2 yellow band (Band 4) increases 

the separation between these two classes (cf. Figure 2). Also, 

the Filamentous class gave significantly lower accuracy with a 

two-band classification accuracy of 66 % (UA) compared to 86 

% for three bands. In the two-band classification, the 

Filamentous class was mainly confused with the Potamogeton 

class and to a smaller extent with the Fucus and Soft classes. 

The User's Accuracy for the Sand, Fucus, and Soft classes were 

similar or slightly lower (a few percent) in the three-band 

classification, compared to the results for two bands. The 

Producer’s Accuracy for three-band classification were higher 

for all classes compared to two bands, except for Fucus where 

both three-band and two-band classification resulted in 87 % 

PA. 

An example of a part of the test site is shown in  Figure 3, 

where the image before (a) and after (b) water correction, and a 

classification map (c) are illustrated. The maximum bottom 

depth in this part of the test site is about 4 m. From a visual 

inspection of the classification result we note that the extent of 

the classes coincides with regions in the water-corrected image 

of similar spectral values. We also compared the classification 

result to a separate and independent field data set from ten 

locations within the classification map shown in Figure 3. Also 

this field data set was collected with underwater video, but by 

another field team. An overview of the comparison of the 

independent field data with the classification map is shown in 

Table 2. To the far right in the table, several classes are given 

within parenthesis if the field data point was situated on the 

border between different classes in the classification map. To 

the left in Table 2, the field data points for which the 

classification map (pixels) corresponds completely to the 

definition of the training classes (subsection 2.5) are marked 

with two stars (**), and points which are partly corresponding 

are marked with one star (*).  

 

Table 1. Confusion matrix for internal evaluation using water-

corrected image data from three bands (WorldView-2, Bands 3-

5). The numbers in italics show the resulting number of pixels 

classified into each class. 

Class  

Sand Pota- 

mogeton 

Fila- 

mentous 

Fucus Soft PA 

(%) 

Sand 25 1 0 0 0 96 

Pota. 0 14 1 0 0 93 

Filam. 0 5 43 5 5 74 

Fucus 0 0 3 20 0 87 

Soft 0 0 3 0 14 82 

UA(%) 100 70 86 80 74  

 

Table 2. Comparison of field data from an independent field 

data set with the classification map shown in Figure 3. The 

classification is based on water-corrected WorldView-2 data, 

Bands 3-5. 
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WorldView-2 

classification map 

1 55 45 30   a Fucus 

**2 5 95  70 20  Fucus 

*3 80 20   20  Filamentous (Sand) 

*4 98 2 15   b Sand (Filamentous) 

**5  100  100 10  Fucus 

*6 85 15 65  15 c 
Filamentous 

(Soft,Potamogeton) 

*7 95 5  5   Sand    

*8 25 80 10 80 30  
Filamentous 

(Fucus,Potamogeton) 

*9 100    10 d Filamentous (Sand) 

*10 15 85  50 50 e Fucus 
a Chorda filum 45 %, Ruppia 25 % 
b Ruppia 15 % 
c Chorda filum 10 %, Ruppia 10 % 
d Decay 35 % 
e Chorda filum 15 % 



 

 
Figure 2. Scatter plots of water-corrected data for five classes 

for WorldView-2 Bands 3 (green), 4 (yellow), and 5 (red).  

 

     
(a)           (b) 

 
(c) 

Figure 3. Image data (red, green and blue bands) before (a) and 

after (b) water correction, and the classification map (c). The 

size of the area is approximately 250 m × 250 m.  

 

The result shows a relatively good correspondence for nine 

field points and incorrect results for Field point No. 1. One 

obvious explanation for the points with inaccurate or less 

accurate classification result is that all existing species are not 

covered within the five defined classes. An example is Field 

point No. 1 (Table 2), where the brown algae Chorda filum (Sea 

lace) were present with 45 % cover which may have 

contributed to the classification assignment to the Fucus class. 

In selecting the training data and defining the classes we 

restricted this preliminary analysis to species which were 

dominating and having high cover. Additionally, we focused on 

species/substrates which, in field data, had large spatial extent 

and thus was more easy to locate in the image data.  Moreover, 

there are GPS position uncertainties in the field data, possibly 

up to a few meters, which may result in image pixels being 

selected as belonging to the wrong class. This effect is 

especially critical in sea floor environments where small 

patches of different species are mixed. The image data also 

contains intensity variations caused by shadowing effects on the 

sea floor, sun glints, and sea floor slopes, which add to the 

complexity of the problem and the classification performance. 

4 CONCLUSIONS AND FURTHER WORK 

We have tested a method for correction of WorldView-2 data 

for water depth and turbidity using high resolution depth data 

from airborne bathymetric lidar. The water corrected image data 

were used in classification tests with a classification model 

compiled from training data from field observations with 

underwater video. An internal evaluation with the training data 

indicates that the classification accuracy is  significantly 

improved using the yellow channel in WorldView-2 data 

together with the red and green channels, compared to using 

only the standard colors (red and green channels). The resulting 

average user's accuracy for the two-band (red, green) 

classification was 73 % compared to 82 % for the three-band 

(red, yellow, green) classification. A comparison of our 

classification map in a small test area with an independent field 

data set shows relatively good correspondence.  

 

Due to the small area investigated and the limited amount of 

independent field data in that area, we consider our results as 

preliminary. There are several interesting topics for future work, 

e.g. comparison of estimated bottom reflectance with field 

measurements of reflectance, further development of the water 

correction methods, and extension and evaluation of 

classification results for additional species/substrates and to 

larger areas. If large areas can be accurately classified, the 

method using high resolution satellite imagery and depth data 

can contribute with important information for environmental 

planning, monitoring, and for scientific purposes.   
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