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Abstract – It is unlikely that we will be able to remotely sense 

coastal or oceanic water chemistry comprehensively from on-

orbit passive or active sensors. Inferences currently are made on 

nitrates using sea surface temperature as a surrogate. Passive 

microwave sensors monitor conductivity as a surrogate for 

surface salinity. Suspended sediments, of course, are detectable 

by scattering. While Raman laser spectroscopy can diagnose 

constituent chemicals, issues of detection sensitivity and also 

eye safety are concerns especially in coastal regions. However, 

it might be that we don’t have to pursue this challenging 

objective. We are primarily concerned from a marine 

management perspective with situations where coastal waters 

become degraded and the biology is disrupted.  In such 

circumstances, the forcing on the relative mix of phytoplankton 

functional groups [PFGs] may well provide the important 

signature that identifies the impact that coastal water chemistry 

[or water temperature] is having on the biological systems. A 

number of case studies have shown that it is feasible to identify 

PFGs using both multi-spectral and hyperspectral remote 

sensing based primarily on the spectral absorption of the 

individual plankton species.  As a general observation, it 

appears that as water quality degrades with an increase in 

concentration of pollutants, in particular, excess nutrients such 

as phosphates and nitrates from agricultural run-off and sewer 

outfalls, the diatom population decreases and flagellate 

population increases.  If it is possible to demonstrate that the 

technology does deliver with acceptable accuracy the important 

trends over time in PFG composition then it certainly should be 

feasible to go back in time for at least a decade to examine 

temporal trends in the mix of PFGs.  
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1. STATEMENT OF THE PROBLEM 

 

The change over time of the composition of phytoplankton 

species in a water body has been linked to climate change and 

anthropogenic forcing such as eutrophication.  Achieving 

reliable methods of observing such changes on a global scale 

using remote sensing observation from orbiting satellite sensors 

is accordingly a desirable goal. In this paper we revisit the 

formulation of the RTE for an assemblage of PFGs in a water 

body and consider the tractability of approaches to the solution.     

 

2. PHYSICAL AND CHEMICAL FORCING 

 

There is a considerable literature that has tracked the changes in 

phytoplankton communities over time in many of the world’s 

oceans and in some cases going back thousands for years using 

benthic sediment analyses. 

 

These changes are important since evidence increasingly 

suggest that their response may be indicators of the impact (i) of 

global warming [eg SST] (ii) of CO2-linked ocean acidification, 

and (ii) of oceanic and particularly coastal pollution on the 

abundance, spatial distribution primary productivity and species 

composition of phytoplankton assemblages. 

 

It is certainly true that the traditional methods of in situ 

sampling of the oceans followed by laboratory analyses [eg 

HPLC and flow cytometry] as well as underway methods [eg 

continuous plankton recorders] are well established and reliable 

methods that have elucidated trends in response to physical and 

chemical forcing [see Moore et al 2009 for recent review of 

current instrumentation].  In more recent times, since we have 

had earth observing environmental satellites, the incidence, 

spatial extent and duration of red tides, coccolithophore and 

tricodesmium blooms have been documented globally. 

 

In Australian waters, it has been difficult in the past to obtain 

data sets that comprise in-water chemical analyses, pigment 

analyses [eg HPLC], plankton populations analysed by 

functional groups, and spectral absorption and scattering data on 

the various plankton that enable trend in PFG composition to be 

evaluated in  a comprehensive manner.  NCRIS Integrated 

Marine Observing System’s [IMOS] investment has put in place 

(i) a sustained observing program of national reference stations 

and (ii) repeat coastal cruise programs that collect and analyse 

water samples for chemical and biological constituents and that 

routinely deploy continuous plankton recorders [CPR]. The 

prospect of acquiring data sets to test the hypothesis is very 

encouraging. 

 

 
3. SOME RECENT DEVELOPMENTS 

 

It is of note that the IOCCG established a Working Group to 

prepare a monograph on the PFG topic indicating that not only 

is the field maturing but also that the methods being applied are 

delivering some interesting data sets covering seasonal and 

regional variability through to interannual global variability.   

   

It is also interesting that a number of major outbreaks of blooms 

[eg of the coast of China during the Beijing Olympics] and in 

the Arabian Sea, off the SW coast of India, would appear to be 

linked to coastal water quality degradation and in the latter case 

reflect a significant decadal shift in PFGs from diatoms to 

flagellates (S Matondkar, private comm.)    

 

Finally, it is worth noting that in 2010 Ocean Optics XX 

Conference in Anchorage scheduled a Short Course on PFGs. 

The Short Course was the most popular of those on offer 

attracting 30 registrants indicating that the field is having some 

impact on the marine research community. It is evident that the 

field has progressed significantly in a few short years with 

indications that phytoplankton size distributions and 

discrimination of plankton populations into PFGs is being 

achieved. It is also apparent that good quality digital libraries of 
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pigment spectral absorption are becoming assembled but are not 

as yet comprehensive or widely available. Further, the 

community needs to continue to undertake  validation 

campaigns evaluating the algorithms they apply and to provide 

indications of the accuracy of the retrieved products. 

 

 

4. THE FORWARD MODEL 

 

Let us focus initially on the very simple system comprising a 

single phytoplankton immersed in a large volume of sea water. 

For the moment we will neglect any consideration of the 

interaction of photons with the water and the air-water interface 

and we also neglect, for the moment, any inelastic scattering 

processes such as Raman scattering. So, as this narrow parallel 

beam of photons of wavelength λ enters the water column, it 

happens that some photons interact with the phytoplankton.  We 

would expect the following as an outcome: 

 

i. Some photons would “miss” the phytoplankton and 

continue to greater depths. 

 

ii. A number of photons would scatter from the 

phytoplankton and some proportion of these photons would 

actually backscatter [bbp] and exit toward the water surface. 

 

iii. A further number would enter the phytoplankton 

structure and might be absorbed by the pigment [aphi]. 

 

The water reflectance of this system can be modelled as a 

function of absorption coefficient [a] and backscattering 

coefficient [bb], providing a means to estimate the concentration 

of phytoplankton using remote sensing. 

 

A widely used expression of the sub-surface remote sensing 

reflectance, rrs, defined as the ratio of upwelling radiance [Lu(0
-

)] to downwelling irradiance [Ed(0
-)], just below the water 

surface (Sathyendranath et al. 2004) is, 
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where, the value of ′ f /Q  is dependent on the bidirectional 

nature of the water column and solar-sensor viewing geometry, 

whereby, the values are commonly taken from Look-Up-Tables 

previously generated using numerical simulations of radiative 

transfer.  

 

The total absorption of the water column is commonly 

expressed as the sum of pure water absorption [aw], the 

absorption of coloured dissolved organic matter [acdom] and 

phytoplankton [aphi] that may be present, 

 

  a = aw + acdom + aphi .                       …2 

 

Similarly, the total backscattering can be expressed as the sum 

of pure water backscattering [bbw] and from particles [bbp], 

 

bb = bbw + bbp .                         …3 

 

If we now allow the addition of a different phytoplankton 

species j to be present in the water column and close by the 

original species i, so it also intercepts the beam of photons then 

we have: 

 

 a = aw + acdom + aphi,i + aphi, j                …4 

and  

bb = bbw + bbp,i + bbp, j .                    …5 

 

If we generalise to a number of n different phytoplankton 

species and include their concentrations Cn [assume low 

concentration so there are no obscuration / packing issues] we 

could formulate eqn. 1 more generally as: 
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There are a number of improvements that can be made to eqn. 6 

including deriving path elongation terms using a numerical 

radiative transfer solver such as Hydrolight, following Lee at al. 

(2004) (Mobely and Sundman 2001). However, increasing 

model sophistication will require the full spectral phase function 

for PFGs to be known rather than just the backscatter. 

 

Inversion of equation (6) could be performed by a successive 

iteration technique, such as Levenberg-Marquardt. However, 

increasing the number of PFGs introduces extra degrees of 

freedom. Multispectral or even hyperspectral data is therefore 

desirable to keep the problem well-conditioned. Nevertheless, 

the possibility for multiple contradictory solutions within the 

bounds of image and environmental noise exists, representing 

the fundamental limitation on imagery information content. 

Regularisation methods have been used when multiple solutions 

are produced in order to identify the most probable solution.  

 

Look-up-tables, built using a forward model such as equation 6, 

are an alternative inversion technique and with a suitable 

adaptive construction can facilitate sensitivity analysis and 

uncertainty propagation by simple brute-force ensemble 

inversion over multiple degrees of freedom (Hedley et al. 2009). 

 

Clearly, various possibilities of differing sophistication exist for 

the construction of a physics-based inversion approach for PFG 

studies. The current limiting factor is determining IOP 

contributions of each PFG. 

 

If we were remotely sensing a marine system, we would 

probably be using some selected wavelengths, such as with 

multispectral satellite sensor observations. We might decide, 

because of the spectral properties of pigments and the large 

array of pigments, that to assist in discriminating pigments we 

should resort to hyperspectral sensing. 

 
 

5. FURTHER CONSIDERATIONS 

  
If we consider eqn. 6, we know that the size distribution of 

phytoplankton relative to the wavelength λ, will determine the 

backscatter efficiency. So, bbp,n, in principle, may be modelled 

using Mie theory. Further, we could adopt a size distribution for 

phytoplankton species n that is representative of one of the three 

commonly used [pico, nano or micro] populations. With respect 

to aphi,n  we would need to have access to a library of  spectral 

absorption coefficients [m-1] for the n phytoplankton pigments. 

 



 

We now consider just the term in eqn. 6 [with Σ in the 

numerator and denominator] and assume we have a water 

column with 5 different phytoplankton species present at 

moderate concentrations and we observe at wavelength λ. We 

would have, with respect to the unknown quantities, just 5 

concentration Cn values and, because we have permitted only 3 

size distributions (there are just 3 bbp,n from which to select) and 

there would be 5 aphi,n spectral selections to choose from; one 

for each phytoplankton species. 

 

If we know something about the plankton species that are likely 

to occur, such as in a marine province, we would already know 

the 5 likely aphi,n. So, we would have the one radiometric 

measurement wavelength λ and 8 unknowns. The concentration 

Cn are the “real” unknowns we seek whereas the bb are, as 

noted, constrained to be one of 3 values based on one of the 

predetermined size distributions, namely nano, pico and micro. 

 

If we make several observations at a set of wavelengths λk, then 

in this rather oversimplified system we have a very tractable 

formulation which, in principle, is soluble. 

  

The use of eqn. 6 in estimating the relative contribution (or 

concentrations) of different phytoplankton species was tested 

for a simplified case whereby two different phytoplankton 

species were modelled. In this test, a number of sub-surface 

remote sensing reflectance spectra were simulated using 

Hydrolight 5.0 over a range of environmental conditions and 

varying proportions of average phytoplankton and 

cyanobacteria. Levenberg-Marquart non-linear optimisation was 

used to invert the simulated rrs spectra using eqn. 6. Here, the 

combined absorption of phytoplankton was parameterised as, 

 

aphi =C Faavg + (1− F)acyano[ ]           …7 

 

where, C is the total phytoplankton concentration, aavg is the 

spectral absorption of average phytoplankton (taken from 

Hydrolight) and acyano is the spectral absorption of the toxic 

algae cyanobacteria (Marrable et al., 2010). F is the relative 

fractional contribution of the 2 species. Fig. 1 shows the model 

retrieval results of the toxic algae fractional component as 

compared with the input values to Hydrolight. This example 

shows encouraging results in separating the different 

phytoplankton species using such an approach. More detailed 

simulations, which include more complex cases of using up to 5 

different phytoplankton species and 3 different size classes will 

be considered in ongoing research. 

 

1. CONCLUSIONS 

  

In this paper we have omitted consideration of many important 

issues that would impact the accuracy of the derived product, 

namely the composition of the functional groups that make up 

the phytoplankton community in a water body. Their omission 

does not imply that they are trivial matters to address. These 

include atmospheric correction, the air-water interface term, sea 

surface glint, effects of dense packing of assemblages, and 

importantly non-elastic processes [eg Raman scattering] 

(Sathyendranath and Platt 1998) etc. Our aim here has been 

more to restate the problem and the formalisms and to review 

the tractability of analytically-based solutions for the 

concentrations of PFGs. 

 
While we have a significant way to go in this task we are 

encouraged by the tractability of the problem and the prospect 

of deriving solutions including associated uncertainties. Next 

steps include the creation, using the forward model, of datasets 

suitable for inversion using one or more solution schemes that 

will permit an estimation of errors and sensitivity of the 

solutions to simulated instrumental noise added to the synthetic 

radiances. 

 

 

Figure 1: Comparison scatter plot of model 
retrieved F (eqn. 6) and hydrolight input F. 
 

2. REFERENCES 

 

J.D. Hedley, C. Roelfsema, S.R. Phinn. “Efficient radiative 

transfer model inversion for remote sensing applications,” 

Remote Sensing of Environment, vol 113, p.p. 2527-2532, 

2009. 

 

Z-P. Lee, K.L. Carder, and K-P. Du. “Effects of molecular and 

particle scatterings on the model parameter for remote-sensing 

reflectance,” Applied Optics, vol 43, p.p. 4957-64, 2004. 

 

D.S. Marrable, P. Fearns, M. Lynch and W. Klonowski. 

“Spectral analysis of estuarine water for characterisation of 

inherent optical properties and phytoplankton classification,”   

Ocean Optics XX, Anchorage, Sept 27- Oct 1, 2010.  

 

C. Mobley and L. Sundman, L. “Hydrolight 4.2 technical 

documentation.” Tech Rep., Sequioa Scientific, Inc., Sequioa 

Scientific Inc. 2001. Westpark Technical Center, 15317 NE 

90th Street, Redmond WA 98052. 

 

C. Moore, A. Barnard, P. Fietzek, M.R. Lewis, H.M. Sosik, S. 

White and O. Zielinski. “Optical tools for ocean monitoring and 

research.” Ocean Sci., vol 5, p.p. 661-684, 2009. 

 

S. Sathyendranath and T. Platt. “Ocean-colour model 

incorporating transspectral processes.” Applied Optics, vol 37, 

p.p. 2216-2227, 1998. 

 

S. Sathyendranath, L. Watts, E. Devred, T. Platt, C.  Caverhill 

and H. Maass. “Discrimination of diatoms from other 

phytoplankton using ocean-colour data.” Marine Ecol. Prog. 

Ser., vol 272, p.p. 59-68, 2004. 

 

 

  
 


