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Abstract - Operational remote sensing systems are 

currently being used to monitor crop growth and climate 

to map impacts on crop production. The linking of these 

data to traditional crop forecasting systems has the 

capacity to improve both the spatial and temporal 

resolution of crop forecasts.  
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1. INTRODUCTION 

Crop forecasting is an essential resource for Australia’s 
agricultural industries. A number of activities are currently 
carried out in Australia to forecast crop yield and production, 
including surveys and censuses, crop modelling, weather and 
climate prediction and mapping using near-real-time 
remotely-sensed data.   

Increasingly, traditional forecasting is being supplemented by 
information derived from remote sensing data at State and 
regional-levels. Improvement in the timeliness and accuracy 
of crop area and yield forecasting through the incorporation 
of remote sensing will improve our national capacity to 
respond effectively to the future challenges of climate 
variability and the impacts of climate change on agriculture.  

The aim of this paper is to review Australian experiences in 
the use of remote sensing for monitoring crop production and 
forecasting and identify how these may be integrated to 
improve crop forecasting in the future. 

2. AGRICULTURAL CENSUS AND SURVEY 

The Australian Bureau of Statistics (ABS) agricultural census 
is the prime source of agricultural commodities statistics and 
is conducted every five years.  The census is sent to the 
170 000 farms with an estimated value of agricultural 
operations of greater than AUD$5 000. In non-census years 
the ABS conducts a survey of around 30 000 farms, stratified 
by industry, size of operation and region. This survey collects 
a similar data set to the census and estimates are produced at 
national, state and regional levels. The census and survey are 
likely to utilise web-based data entry in the future. 

While the ABS surveys focus on aggregated production 
information, ABARES conducts a much smaller annual 
survey that collects detailed financial information for around 
2 000 farms from the broadacre cropping, grazing and dairy 
industries. These industries account for around 70 per cent of 
all farms (Lubulwa et al., 2010). This survey is also stratified 
by industry, size and survey region and produces estimates at 
the regional, state and national levels. The Australian grain 
industry is covered by 12 of the survey regions. In order to 
integrate this survey information with other spatial data, a 
range of data capture methods have been trialled. At a 
minimum a single point location is recorded for each farm 
although polygon data capture has also been used for specific 
projects (e.g. Davidson et al., 2006). 

3. MAPPING AGRICULTURAL LAND USE 

Operational remote sensing systems are currently being used 
in assessments of land use, land cover and crop area 
estimates. Due to the large land area in Australia and with 
most areas being relatively cloud-free, remote sensing is the 
most cost-effective option for mapping agricultural land use 
at a national-scale.  

Two sets of data are collected through the Australian 
Collaborative Land Use and Management Program 
(ACLUMP) which promotes the development of nationally 
consistent land use and land management data in Australia:  

Catchment-scale mapping is produced by combining 
Australian State government-held cadastral data (land tenure) 
with existing land uses and interpretations of satellite 
imagery. Initial mapping has been carried out using Landsat 
TM data but more recent updates use SPOT 5, Ikonos and 
QuickBird data.  The data are captured at a range of scales 
from 1:25 000 in urban, peri-urban and irrigated areas, 
1:100 000 in broadacre cropping areas and 1:250 000 in 
pastoral areas. Data are captured and classified according to 
hierarchical land use codes and then verified in the field. 
Independent validation is then carried out to ensure the data 
have accuracy greater than 85 per cent. These data are 
updated every 5 to 10 years and are suitable for constructing 
crop masks. 

National-scale mapping is carried out by spatially 
disaggregating five-yearly ABS agricultural census data 
using concurrent AVHRR NDVI imagery.  The SPREAD II 
(Barry et al., 2008) model constrains the classification of the 
NDVI using statistical local area-level ABS census data.  The 
outputs of the model include probability surfaces for each 
commodity which are then classified into dominant land use 
and presented at a scale of 1:2 000 000. The most recent map 
available uses the 2005–06 agricultural census results. These 
data are useful in determining the variety of crops and 
agricultural activities in an area and for validation of 
agricultural production data obtained by remote sensing. 

Recent work by Potgieter et al. (2010) has investigated the 
potential of using MODIS 16-day composite EVI time-series 
across the cropping season to classify crop areas. This work 
successfully discriminated the winter crops in Queensland’s 
major grain growing areas by applying the Fourier Transform 
approach to initial EVI profiles and then classified crop types 
using ground data collected from a range of collaborators. A 
more recent analysis demonstrated similar success with a 
parametric curve fitting approach that also shows promise for 
within-season analyses (Potgieter and Lawson, 2010). 
Estimates are enhanced by the use of potential crop area 
masks. This work demonstrates that successful crop 
discrimination requires accurate ground data and a regional 
approach.  

 



4. CROP PRODUCTION FORECASTING  

Crop forecasting systems in Australia are mostly limited to 
the major cereal crops. Crop forecasts have been developed 
to assist decision-making for handling and marketing crop 
commodities and for the assessment of the impact of extreme 
climatic events.  

Simple agro-climatic models are the preferred models for 
regional crop forecasts. A comparative study by Hammer et 
al. (1996) found that simpler empirical models and agro-
climatic (stress index approaches) had better predictive 
ability and had less input requirements than some of the more 
complex simulation approaches (e.g. APSIM).   

The stress index models (Oz-Wheat, SSIM and STIN) 
(derived from Nix and Fitzpatrick,1969) use a weekly simple 
dynamic tipping bucket water balance model. Climate and 
crop-specific parameters are integrated to produce a stress 
index. The model input parameters are selected based on the 
best fit when calibrated against actual shire or local 
government area (LGA) yields from ABS. The stress index 
model outputs are generated at point-scale and then 
aggregated to create a LGA-scale index. This index value is 
transformed to yield/unit area through a simple regression 
model.  

The various crop models currently estimate up to 80 per cent 
of the variation in yield. Estimates of regional yield contend 
with the use of average inputs for the regional-scale that 
actually encompasses heterogeneity of those inputs, 
inaccuracy of climate forecasts and the inability to model 
pests, disease and erosion. 

National commodity forecasts 

ABARES produces the national crop production forecast four 
times per year - in February, June, September and December. 
Inputs include regional yield forecasts based on a simple 
stress index model (detailed above) provided by the 
Agricultural Production Systems Research Unit of the 
Queensland Department of Employment, Economic 
Development and Innovation (QDEEDI), information on the 
seasonal climate outlook from the Australian Government 
Bureau of Meteorology and estimates of area planted from 
bulk handlers, traders, agronomists and industry bodies. 

Unforseen changes to input factors including seasonal 
conditions over the forecast period present a risk in 
forecasting production. As a result, actual production can 
sometimes differ from the initial point forecasts.  

State commodity forecasts 

QDEEDI runs seasonal crop outlooks for wheat and sorghum 
for LGAs within Queensland and north-eastern New South 
Wales. These outlooks are updated each month during the 
growing seasons for wheat and sorghum. Both outlooks 
integrate a simple agro-climatic stress index model (Oz-
Wheat or SSIM), which is sensitive to water deficit or excess 
during the growing season, with actual climate data, up to the 
forecasting date, and projected climate data, based on the 
Southern Oscillation Index (SOI) phase system after the 
forecasting date.  

Western Australian Department of Agriculture and Food 
(DAFWA) produces a seasonal crop outlook for wheat for 
LGAs for Western Australia. This report is updated each 
month from April to December. This outlook combines the 
simple stress index model STIN from actual climate data up 

to the forecasting date and projected seasonal climate data 
based on the average for the last 30 years.  

5. CROP YIELD MODELLING 

Over the past decade, the increased availability of regional 
yield data, improvements to seasonal forecasts and modelling 
technology and the integration of remote sensing data have 
made it possible to advance regional-scale crop modelling. 
The current and potential advancements in regional-scale 
crop yield modelling are discussed below. 

Improvements to seasonal forecasting 

To generate forecasts, models are run using actual climate 
data up to the forecasting date and then use projected climate 
data for the rest of the season. The projected climate data can 
come from statistical systems with median climate and 
analogue years (such as ENSO, SOI, SAM or IOD phases) as 
predictors. Outputs from Dynamical General Circulation 
Models (GCMs) provide predictions of many aspects of the 
climate system and so their output can be readily adapted for 
a wide range of applications.  

Hansen et al. (2004) have studied the use of GCM-predicted 
seasonal rainfall with a wheat simulation model to forecast 
regional and state yields in Queensland. The results have 
shown an improved yield forecast accuracy during the pre-
planting period when the SOI phase seems to be less 
predictable. This encouraging result may substantially 
increase the role of these forecasts in handling and marketing 
of the Australian grain crop.  

Integration of remote sensing data and forecasting 

Integrated crop forecasting approaches are currently 
experimental. Improvements in crop simulation models can 
be achieved by integrating variables derived from remote 
sensing to ‘scale-up’ crop yield simulations. There are two 
main approaches: direct integration of satellite data into 
models to calibrate the simulation model parameters and 
hybrid models which combine the outputs of growth 
simulation models with remotely-sensed crop indices to 
produce predictive regression models related to yield.  

Remote sensing data can be directly incorporated into the 
simulation model to calibrate the simulation parameters. The 
method is based on the correlation between the temporal 
changes in satellite-derived vegetation indices (e.g. NDVI) 
and primary production (crop yields) based on the absorption 
of photosynthetically active radiation by the canopy. Remote 
sensing data can also provide an estimate of biomass. Earlier 
regional studies found that using NDVI data during the grain-
fill period only improved the estimates of potential spring 
wheat yields (Doraiswamy, 2003). 

Some field-scale studies have shown that NDVI data can be 
integrated in crop growth simulations to calibrate or adjust 
parameters during the simulation period (run-time 
calibration) (Jongschaap, 2006). The method is based on 
replacing simulated values by remotely-sensed values and the 
hypothesis that those physiological conditions of the crop as 
expressed by leaf area index and other plant growth 
parameters can be quantified using remote sensing 
information that has greater accuracy than the simulations. 
Remotely-sensed observations may be taken at the canopy 
level (airborne) or from satellites to cover larger spatial areas. 
Results show that run-time calibration (using input from 
remotely-sensed sources) of mechanistic simulation models 
may improve the accuracy of predicted yields. 



Hybrid models 

Hybrid models use Partial Least Square (PLS) models to 
solve multiple combinations of simulated parameters and 
satellite-derived vegetation indices (e.g. NDVI). This concept 
allows for the parameters that contribute most to higher 
model performance to be selected for a given region (Boken 
et al., 2002 and Schut et al., 2009). Research suggests that 
these products are more robust than simulation models 
especially during drought because they better account for 
impacts of climate on yield. 

Recent research has shown that the combination of NDVI and 
outputs from simulation models improves wheat yield and 
production forecasts. In a study on improving the current in-
season wheat yield and production forecasting system for 
Western Australia on a LGA basis (Schut et al., 2009), ten 
predictive PLS models were developed containing various 
combinations of the variables calculated from STIN and 
temporal NDVI data series from AVHRR and/or MODIS for 
the period 1991–2006. The results showed that the 
multivariate models outperformed the simple models with 
predictive capability increasing with the number of variables 
involved in the PLS model. The best model had a mean 
relative prediction error (RE) per LGA of 10 per cent for 
yield and 15 per cent for production, compared to RE of 13 
per cent for yield and 18 per cent for production for the Stress 
Index-based model.  

The results of another study using a similar hybrid predictive 
model for wheat yield in Canada showed that for most 
regions the model including  NDVI averaged over the 
heading phase produced the highest R2 (up to 0.79) (Boken et 
al., 2002). It was concluded that the predictive power 
(accuracy) of hybrid models is significantly greater than that 
of simulation models without additional variables derived 
from remote sensing.     

6. IMPACTS OF EXTREME EVENTS ON 

AGRICULTURE  

A number of extreme events and natural disasters can 
influence the reliability of crop forecasts including drought, 
floods and fire. In most cases the location and spatial extent 
of these events are mapped or have spatial information whilst 
their impacts on productions are not necessarily estimated. 
Linking of these factors to crop production and yield would 
enhance the accuracy of crop forecasts. Relevant sources of 
information include: 

• Droughts, wind, storms, heat and frost (Bureau of 
Meteorology) 

• Fire (sentinel.ga.gov.au), floods and natural hazards 
(Geoscience Australia) 

• Plague locusts (www.daff.gov.au/animal-plant-
health/locusts/current) 

• Dust storms (dustwatch.edu.au) 

• Seasonal climate outlook (BOM and 
www.bom.gov.au/silo/SILO2/ website) 

• Pasture growth (www.longpaddock.qld.gov.au and 
www.pasturesfromspace.csiro.au/). 

 

7. INTEGRATED CROP FORECASTING 

SYSTEM 

To improve crop yield forecasts for Australia, an integrated 
crop forecasting system could be achieved by linking and 
delivering remotely-sensed and contextual data, historical 

trends and model outputs at spatial and temporal resolutions 
appropriate for farming industries. 

This inputs and outputs of such a system would include: 

• Crop masks delineating areas where crops and pastures 
could be grown. 

• Crop and pasture area estimates, based on the detection 
of green response using remote sensing data. 

• Weather and climate forecasts for the upcoming season. 

• Yield prediction based on climate and crop modelling 
and the use of ancillary data. 

• Validation including surveys and ground-truthing. 
 
It is conceivable that a prototype system could be developed 
linking NDVI or EVI imagery, agricultural commodity 
statistics and crop calendars to provide estimates of cropping 
area; and climate data and NDVI or EVI data could be 
incorporated into simulation models to provide estimates of 
crop yield. Estimates of crop production could be derived 
through the combination of yield and area estimates. Ideally 
crop forecasting would be run every 3 months and be 
validated against ABS commodity statistics. 
 
In the long-term such a system could be automated and 
incorporate improved seasonal forecasting data from GCM 
models, remotely-sensed climate data to replace ground 
observations) and include impacts of pests, disease and other 
external factors on crop production. 

The following data requirements have been identified to 
improve crop forecasting: 

• High temporal resolution NDVI data - Current satellite 
data includes the MODIS sensors (Terra and Aqua) 
(NASA), AVHRR (NOAA), MERIS (Envisat) and 
SPOT Vegetation (SPOT Image). 

• Remote sensing of ground observations used for crop 
modelling. This will potentially improve the robustness 
and accuracy of forecasts due to improvements in crop 
masks and validation and calibration of model 
parameters. Other biophysical variables derived from 
remote sensing could also be used to more accurately 
calibrate crop and pasture growth prediction including 
wind fields, solar radiation and evapotranspiration.  

• Seasonal climate forecasting could be improved by 
adopting outputs from the dynamical fully-coupled 
climate models which can predict future climate and 
associated uncertainty without relying on history.  There 
is the potential for improvements in accuracy and lead -
time of seasonal predictions in Australia. The results of 
a collaborative effort called the Australian Community 
Climate and Earth System Simulator (ACCESS) will 
provide the framework for dynamical prediction across 
all time scales. To improve the seasonal forecasting 
more research will be carried out on processes such as 
the Madden-Julian Oscillation, which is the dominant 
mode of intra-seasonal variability and better assimilation 
of ocean and climate data into coupled dynamical 
models.   

• The accuracy of wheat yield and production forecasting 
is likely to be improved if other crops and pastures are 
effectively masked out using satellite imagery.  An 
accurate method is still required to discriminate between 
the signatures of annual crops and pastures. One 
technique that requires further investigation uses the 
date of green-up to discriminate crops from pastures. 

http://sentinel.ga.gov.au/acres/sentinel/index.shtml
http://www.daff.gov.au/animal-plant-health/locusts/current
http://www.daff.gov.au/animal-plant-health/locusts/current
http://www.environment.nsw.gov.au/dustwatch/dwreports.htm
http://www.bom.gov.au/silo/SILO2/
http://www.pasturesfromspace.csiro.au/


Research conducted by LandGate in Western Australia 
constrained the classification of MODIS EVI data using 
latitudinal zones to account for day-length and other 
crop growth parameters (M Adams, LandGate, pers. 
comm.) 

• An accurate near real-time production forecast requires a 
real-time estimate of the area planted in targeted 
agricultural systems. The use of satellite imagery for 
more objective, timely and accurate crop information 
during entire season is still relatively novel. The results 
from the study by Potgieter et al. (2005), using digital 
imagery from MODIS platforms to estimate winter crop 
area planted in Queensland showed a significant 
potential to capture total regional crop area and a good 
capability (>95% correct classification) in 
discriminating between winter crops. 
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This paper reviews the use of satellite–based remote sensing 
for mapping and estimating crop production in Australia, 
identifies the components of a more integrated crop 
forecasting system and proposes a way forward.   

Operational remote sensing systems in Australia have the 
potential to monitor crop growth and climate inputs and to 
map impacts on crop production. The linking of these data to 
traditional crop forecasting systems has the capacity to 
improve both the spatial and temporal resolution of current 
crop forecasts and provide lines of evidence to support 
traditional surveys. 

Ancillary datasets and techniques will continue to be relied 
upon to improve mapping particularly of growth stage and 
crop yield. These include crop models, crop calendars as well 
as calibration and validation data.  

To improve crop forecasting, an integrated system could be 
achieved by linking remotely-sensed and contextual data with 
historical trends and model outputs at spatial and temporal 
resolution appropriate for farming industries.  

The next steps in developing this type of system include 
building a prototype system and demonstrating the 
improvements to the existing crop forecasting system in 
terms of mapping extent and location of crop area, 
discrimination of crop and pasture land uses, and end-of-
season estimates of crop production. 
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