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Abstract – For 473 km² of farmland surrounding Kakamega 
Forest in western Kenya, QuickBird satellite imagery has been 
analyzed by an object-based image analysis approach. 
Preprocessing involved atmospheric/orographic correction as 
well as mosaicing and was followed by ground truthing and 
visual interpretation. Segmentation was optimized using a 
newly introduced ‘area fitness rate’ as a discrepancy method 
and an ‘objective function’ as a goodness method. The final 
rule set for classification consisted of 831 individual processes 
and has resulted in the distinction of 15 land use/cover classes. 
This wealth of information has provided a thorough basis for 
a) the analysis of land use and landscape structures leading to 
ten distinct farmland types, and b) the redistribution of census 
population data via the development of a GIS-based 
population surface model. The typology and the QuickBird 
derived houses or the redistributed population have been used 
to simulate c) alternative futures of rural livelihood 
considering price development and crop yields, and d) 
rainwater harvesting potential. 
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1.  INTRODUCTION 
 

Within the BIOTA East Africa project, funded by the German 
Federal Ministry of Education and Research (BMBF) from 2001 
to 2010, three forests in Kenya and Uganda were investigated. 
This provided the means to compare influences of different levels 
of disturbances, fragmentation, and human use on the biodiversity 
of East African rainforests (Schaab et al., 2010). Kakamega Forest 
became the focus area of research and served as a case model 
when looking into recommendations for a sustainable biodiversity 
management (Schaab et al., 2009). Here, the conflict between the 
needs of the rural population and the conservation of biodiversity 
was the main target of BIOTA research (Schaab et al., 2010). 
Kakamega Forest is placed in one of the world’s most densely 
populated rural areas, with an average population density of 
643 people/km² (for 1999, projected to be 892 people/km² in 
2009) in the 2 km zone adjacent to the reserve’s boundary (Schaab 
et al., 2009). Being claimed to represent the easternmost relic of 
the Guineo-Congolian rainforest (Kokwaro, 1988), the 238 km² 
large reserve inhabits species nowhere else to be found in Kenya 
together with a unique mix of west African lowland and 
afromontane species (cf. Althof, 2005). Kakamega Forest once 
formed a single forest block together with the two Nandi Forests. 
However, since 1912/13 it has lost about 60% of its forest cover 
(Mitchell et al., 2006) revealing a rather degraded state today 
(Schaab et al., 2010). The people living in close vicinity to the 
forest depend on the forest for satisfying their daily needs 
(Gaesing, 2009). Efforts in harmonizing its management by the 

two authorities Kenya Wildlife Service (KWS) and Kenya Forest 
Service (KFS) have resulted in a participatory forest management 
plan including BIOTA outcomes (Mitchell et al., 2009) and being 
ready to be launched in early 2011. 
The farmland receives high annual rainfall suggesting a good 
agricultural potential and can be subdivided into the so-called 
sugarcane (in the north) and tea (in the south) zones. Subsistence 
farming is prevalent with a biannual harvest of a maize-bean 
intercrop (Jätzold et al., 2005). For generating income, farmers 
also plant sugarcane and tea; other sources of income include 
informal employment and remittances (Gaesing, 2009). Because 
household earnings are generally so low, a diversification of 
income sources is required (Rietdorf, 2009). Commercial large-
scale farming is hardly found in the area with the exception of a 
tea estate. Due to the ever-increasing demand for farmland by its 
growing population the area surrounding Kakamega Forest is 
already today highly structured (see Figure 1).  
 

 
 

Figure 1.  The highly structured farmland north of Kakamega 
Forest, western Kenya (by T. Lübker). 

 
Very high resolution QuickBird satellite imagery (MS bands 2.40 
m, PAN 0.60 m, acquired Feb/Mar 2005) covering 244 km² forest 
and 473 km² farmland was purchased to serve the interdisciplinary 
group of project partners with detailed information. While for the 
forest reserve a vascular plant community map has been derived 
via a visual interpretation based on vegetation surveys and in situ 
knowledge (Schaab et al., 2010), the imagery of the highly 
structured farmland required an automated object-based approach. 
It has been anticipated to use the results on land use and landscape 
structures for analyzing biological and socio-economic field 
findings by the partners, thus allowing recommendations for a 
sustainable land use planning with the target of an improved rural 
livelihood while taking pressure from the forest and its 
biodiversity (Lübker, and Schaab, 2006). 
 

2.  OBJECT-BASED IMAGE ANALYSIS 
 
2.1  Preprocessing and data preparation 
Atmospheric and orographic correction was carried out with 
ATCOR 3 and improved image quality and the comparability of 
the two image swaths considerably. In particular orographic 
effects could be minimized successfully, while the removal of a 
thin haze layer could not be achieved. For mosaicing the two 
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already georeferenced ‘standard’ image swaths a procedure was 
elaborated with a relative geometrical adjustment of the two 
swaths in only a very narrow strip to avoid resampling for most of 
the data (Lübker, and Schaab, 2008b). In a combined qualitative 
and quantitative assessment of various pan-sharpening methods, 
the high-pass filter method (Erdas Imagine) was evaluated as 
being best for the imagery at hand and for the anticipated tasks 
(Lübker, and Schaab, 2008c).  
In Oct. 2007 a ground truthing was conducted in twelve test areas 
of 2 or 2.25 km² selected based on eleven criteria to represent the 
highly heterogeneous agricultural matrix and to consider areas of 
BIOTA activities. Beforehand 411 interesting, unclear or 
characteristic features to be visited were marked of which only 8% 
could not be verified. Supported by a field assistant, in total 636 
samples were recorded, 224 regarding structural elements, 389 
regarding land use, and 23 with other comments (Lübker, and 
Schaab, 2008a). Building upon the knowledge gained and the 
information obtained during field verification, a detailed visual 
interpretation for five of the twelve test areas was performed (for 
an example subset see Figure 2, left). On-screen digitizing at a 
scale of approx. 1:1,000 resulted in more than 16,000 polygons 
(Lübker, and Schaab, 2009), thus presenting a solid base for an 
evaluation of the segmentation quality later. 
 
2.2  Segmentation 
Adding the concept of groups (4) for a multilevel image 
segmentation, the classes as defined and adjusted for ground 
truthing (28) and visual interpretation (27) had to be rearranged, 
now considering in total 19 classes (Lübker, and Schaab, 2009). 
Since in object-based image analysis (OBIA) all subsequent 
classification steps depend on the quality of the segmentation 
result, the choice for an optimal parameter setting is fundamental. 
Here, for the region-based ‘multiresolution’ segmentation, five 
degrees of freedom have to be considered: layers to be selected, 
the weighting of layers, scale parameter, shape factor, and 
compactness (Lübker, and Schaab, 2009). Instead of testing a 
selection of 2,400 parameter combinations for five focus study 
sites and four groups of classes, a methodology has been 
developed to effectively facilitate the segmentation step. The 
approach is based on the determination of the first three listed 
degrees of freedom, keeping the others constant (120 parameter 
combinations, 600 candidate segmentations), by applying a newly 
introduced ‘area fitness rate’ as a discrepancy method, which 
calculates the degree of overlap between each reference polygon 
of the visual interpretation and the associated candidate segments. 
The two remaining degrees of freedom were then optimized while 
already adopting the just determined values via an ‘objective 
function’ as a goodness method, which balances inner-segment 
homogeneity and intra-segment heterogeneity (for a detailed 
description see Lübker, and Schaab, 2009). With in most cases 
very similar results obtained for the five focus sites selected to 
account for the heterogeneity of the area, a cross-check on the 
reliability of the results was performed. The determined parameter 
settings were judged representative and could thus be applied to 
the complete imagery (Lübker, and Schaab, 2009). 
 
2.3  Classification 
For selecting the features of relevance to distinguish one class 
from the others, the Seath tool was used. Class separability was 
determined using 980 selected objects from the twelve test areas 
as reference and taking into account 69 different object 
characteristics. The ten best distinguishing features were noted and 

used in the subsequent development of a knowledge-based rule set 
(considering in parts statistical measures), which consists of in 
total 831 individual processes. Here, the dependency on trial-and-
error is a major drawback, which led to long development times 
(Lübker, and Schaab, 2010). To conclude, 15 LUC classes (plus 
shadow) of the anticipated 18 classes (not considering shadows 
here) could be distinguished (see Figure 2, right). This was judged 
satisfactory as well as the fact that only about two thirds of the 
houses could be extracted. It is believed that the shortcomings 
have to be ascribed to the data and not to the approach taken.   
For processing the complete geodataset, a splitting into 300 tiles 
was necessary (Lübker, and Schaab, 2010). Obvious classification 
errors of e.g. features to be joined were manually edited when 
stitching the tiles together again. A suitable representation of the 
entire classification results (i.e. of the more than 700,000 
polygons) is possible between the scales of 1:5,000 and 1:25,000 
depending on the purpose, leading to map sizes of approx. 7.6 m 
by 5.4 m and 1.5 m by 1.1 m respectively. 
 

  
 

Figure 2.  Visual interpretation (left) versus automated OBIA 
result (right) for a subset of the farmland in Buyangu village. 

 
3.  APPLICATIONS 

 
3.1  Farmland typology 
Due to the size and the level of detail, only an aggregation of the 
classification results enables to explore spatial patterns and thus to 
gain geospatial knowledge. Therefore, the farmland was divided 
into 1,324 hexagon-shaped areas (generally sized 41.67 ha). While 
straightforward maps of land use proportions already showed 
spatial patterns, three cluster analyses revealed more distinct 
spatial patterns. Based on the classification results, a DEM, as well 
as additional data retrieved through visual interpretation (i.e. 
schools and roads), for each individual hexagon meaningful 
landscape-determinant parameters of land use (6), landscape 
structures (4), and accessibility (3) were derived. Through 
hierarchical cluster analysis based on Ward’s method three 
typology maps have been created, one for each topic. A synoptic 
cluster analysis based on all 13 parameters led to the final spatial 
farmland typology distinguishing ten different types of farmland 
(see Figure 3). The revealed ten types can serve as a planning 
basis for actions adjusted to the specific needs and problems of 
people living in similar settings (see Schaab et al., 2010).  
 
3.2  Population redistribution 
Census data assumes population density to be uniformly 
distributed within each administrative unit. To reflect the actual 
distribution, a GIS-based population surface model was developed 
(Ngochoch, 2007) redistributing human population in the 
Kakamega-Nandi forests area. Multiple geodatasets were 
employed for ancillary information, e.g. populated places, 
exclusion areas, infrastructures, rivers, and slopes. The ancillary  



 
 
Figure 3.  Subset of the Kakamega farmland typology with sample 

classifications to demonstrate the distinctness of types. 
 
geodata was used for determining the most significant features 
affecting population distribution in each sub-region through 
logical correlation. The resulting ‘population determinant factors’ 
in turn impact on the weights given to the driving factors. 
Expertise showed to be very important in deciding on the logical 
correlations and weightings related to the ancillary data. 
Therefore, the original model was improved (Lung et al., in prep.) 
by using the houses as classified from the QuickBird satellite 
imagery. Polynomial frequency distribution functions of the 
houses related to slope, roads, rivers/streams, markets, and schools 
resulted in trustable weights per factor, which are applied now per 
30 m pixel. Additionally, a mass preserving smoothing algorithm 
removes the abrupt changes in population density along the 
sublocation boundaries. The result (see Figure 4 or Schaab et al., 
2010) is a more realistic pattern in the population distribution 
without obvious artefacts. 
 

   
 

Figure 4.  Comparing population density per administrative unit 
(left), houses as derived from QuickBird satellite imagery (centre), 

and model output of gridded population distribution (right). 
 
3.3  Socio-economic scenarios 
Both the typology and the QuickBird derived houses have been 
used to simulate alternative futures of rural livelihood, again with 
hexagons as the reference unit. In eight scenarios different 
developments in crop yields and prices were assumed for four 
time steps (2005-2020). Here, projections on population growth, 
an assumed decrease in household sizes, as well as additional area 
needed due to division of farms have been accounted for. The 
modelling output has been summarized for seven map topics, 

among them household production of important crops and 
household earnings through the sale of crops (see Figure 5). In 
total 175 thematic maps are available, which ask for a visualizing 
in a dynamic interactive tool to facilitate interpretation as well as 
local planning. 
 

 
 

Figure 5.  Diagrams visualizing per type of farmland possible 
future developments for two socio-economic topics. 

 
3.4  Rainwater harvesting potential 
In Kenya the area of Kakamega is known for plenty of rain. 
Recently and due to climate change impacts severe droughts 
hamper the availability of water and thus also the production of 
food. Therefore, it is striking that rainwater harvesting (RWH) 
from roof areas is not a common feature in the region. Concepts 
for a spatially explicit modelling of RWH potential in a GIS 
consider four different levels of detail and geographical extents, 
this dependent on available data of population distribution: census 
data and gridded population, houses as classified from the 
QuickBird data, and houses visually delineated from the same 
source covering just one village. Generally, the modelling 
procedure (Nthuni, 2010) covers the determination of spatial 
patterns of mean monthly rainfall, the rainwater endowment, the 
RWH potential, the water demand, and the rainwater use balance. 
Outputs aimed at are RWH potentials (Figure 6, left) or rainwater 
use balances, the determination of optimal tank sizes, and for the 
village level (see Figure 6, right) a comparison to collecting water 
from boreholes and streams. 
 

  
 

Figure 6.  Modelling output on the annual RWH potential per 
person for the Kakamega-Nandi area (left), interim result of a cost 

surface related to water collection in Buyangu village (right). 
 

4.  CONCLUSIONS AND OUTLOOK 
 
The processing of the QuickBird satellite image data turned out to 
have become a special challenge due to its large spatial extent 
(Lübker, and Schaab, 2009) with many difficulties studies often do 
not encounter due to employing small scene subsets only or 
aiming at the separation of a limited set of features. However, 



although the satellite image analysis has taken several years, it has 
been worth the effort as demonstrated by the applications 
presented here. Changes in farmland use and structures are taking 
place continuously. Therefore, we consider an aggregation of the 
classification results a feasible and appropriate approach for 
planning purposes. This applies also to the subsequent simulation 
of socio-economic scenarios. For fine-tuning of model drivers or 
when considering only small areas, the classification results are an 
invaluable source for selecting the required features. 
Such a wealth of detailed, spatially-explicit information has never 
before been available for the farmland studied. For its 
consideration in biodiversity-related land use planning efforts of 
BIOTA it may come too late. But many more applications for the 
benefit of the people and thus also of their forest are imaginable. 
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