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Abstract – Based on canonical correlation analysis the 

iteratively re-weighted multivariate alteration detection 

(MAD) method is used to successfully perform 

unsupervised change detection in bi-temporal Landsat 

ETM+ images covering an area with villages, woods, 

agricultural fields and open pit mines in North Rhine-

Westphalia, Germany.  A link to an example with ASTER 

data to detect change with the same method after the 2005 

Kashmir earthquake is given.  The method is also used to 

automatically normalize multitemporal, multispectral 

Landsat ETM+ data radiometrically.  IDL/ENVI, Python 

and Matlab software to carry out the analyses is available 

from the authors’ websites. 
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1.   INTRODUCTION 
 

The detection of change over time is a very important aspect of 

the analysis of digital satellite imagery.  Many methods are 

available to carry out this type of analysis (Coppin et al., 2004).  

One such method is the iteratively re-weighted multivariate 

alteration detection (IR-MAD or iMAD) algorithm (Nielsen et 

al., 1998, Nielsen, 2007, Canty, 2010) which may be used for 

unsupervised change detection in multi- and hyperspectral 

remote sensing imagery as well as for automatic radiometric 

normalization of such multitemporal image sequences (Yang 

and Lo, 2000, Furby and Campbell, 2001, Du et al., 2002, 

Canty et al., 2004, Canty and Nielsen, 2008, Canty, 2010).  

Simple spectral band-by-band differences for simple change 

detection make sense only when the data are calibrated or at 

least normalized to the same scale and zero.  It is often difficult 

to carry out such normalization especially for historical data 

where no auxiliary information on atmospherical conditions or 

instrument settings exists.  In this paper the MAD method is 

applied to multispectral Landsat ETM+ data to carry out 

unsupervised change detection between acquisitions at two 

time points and to automatically normalize the data at the first 

time point to that of the second time point.  Also, a link to an 

example with ASTER data to detect change after the 2005 

Kashmir earthquake is given. 

 

2.   METHOD 
 

The idea in the IR-MAD method is: rather than ordering the 

data by wavelength we order them by a measure of similarity, 

here correlation.  This is done by means of an established 

multivariate statistical technique, namely canonical correlation 

analysis (CCA, Hotelling, 1936).  Much like principal 

component analysis CCA constructs new orthogonal variables 

from the original ones.  CCA finds two sets of linear 

combinations of the original variables, one for each time point.  

The first two linear combinations are the ones with the largest 

correlation.  This correlation is called the first or leading 

canonical correlation and the two linear combinations are 

called the first or leading canonical variates.  The second two 

linear combinations are the ones with the largest correlation 

subject to the condition that they are orthogonal to the first 

canonical variates.  This correlation is called the second 

canonical correlation and the two linear combinations are 

called the second canonical variates.  Higher order canonical 

correlations and canonical variates are defined similarly. 

 

The pair-wise differences between the canonical variates which 

are as similar as they can get are the change variables; these 

differences are termed the MAD variates or MADs for short.  

Because these MADs are orthogonal, ideally different types of 

change will be associated with different canonical variates and 

MAD variates.  Basing the MAD transform on CCA ensures 

independence of linear and affine scaling of the original data. 

 

Properly normed to unit variance, the sum of the squared MAD 

variates ideally will follow a chi squared distribution with as 

many degrees of freedom as we have spectral bands.  This may 

be used to calculate a measure of probability of no-change.  

This in a series of iterations is used to place increasing weight 

on the no-change observations to obtain an increasingly better 

background of no-change against which to detect change.  

Also, the no-change observations may be used in orthogonal 

regression (also known as total least squares) which allows for 

uncertainties in both or all variables involved, to obtain 

automatic radiometric normalization of image time series. 

 

3.   DATA 
 

The method is applied to Landsat ETM+ data covering 

villages, woods, agricultural areas and open pit mines in North 

Rhine-Westphalia, Germany.  Also, a link to an example with 

ASTER imagery for detection of landslides in the aftermath of 

the 2005 earthquake in Kashmir is given. 

 

3.1   Landsat ETM+ Data, Jülich, Germany 
Landsat ETM+ data covering villages, woods, agricultural 

areas and open pit mines in the Rur catchment basin centered 

on the town Jülich, Germany, from 26 June and 29 August 

2001 are subjected to the IR-MAD change analysis (the 

thermal band is excluded from the analysis). 

 
Figures 1 and 2 show Landsat ETM+ bands 4, 5 and 3 acquired 

at 26 June and 29 August 2001 as RGB.  The images are 1000 

by 1000 28.5 meter pixels.  Figure 3 shows the development of 

the six canonical correlations over the iterations.  After 

approximately 25 iterations the method seems to home in on 

the no-change observations and then it stabilizes. 

 

Figure 4 shows a scatter plot of the leading canonical variates 

for the two time points.  This shows no-change pixels along the 

line y=x and change pixels off that line.  Figure 5 shows the 

same scatter plot after iterations, and we see that a much better 

discrimination between change and no-change is achieved (the 

“bump” off the line y=x are the change pixels). 



 

 
 

Figure 1.  Landsat ETM+ data, Jülich, Germany, 26 Jun 2001. 

 

 
 

Figure 2.  Landsat ETM+ data, Jülich, Germany, 29 Aug 2001. 

 
Figure 6 shows the three IR-MAD variates corresponding to 

the highest canonical correlations as RGB.  No-change regions 

(primarily villages and woods) are the grayish, structureless 

areas, change regions (mainly agricultural fields and open pit 

mines) have structure and are in saturated colours (including 

black and white if present).  The colours indicate the type and 

direction of change (primarily maturing sugar beet and corn 

crops and grain harvesting). 

 

Figure 7 shows the so-called chi squared image where black 

indicates no-change and white change.  The brightest pixels 

and hence the largest amount of change is associated with 

agricultural activities. 
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Figure 3.  Canonical correlations over iterations. 

 

 
Figure 4.  Scatter plot of canonical variates 1. 

 
Figure 5.  Scatter plot of iterated canonical variates 1. 

 



 

 
 

Figure 6.  Landsat ETM+, Jülich, Germany, IR-MAD. 

 

 
 

Figure 7.  Landsat ETM+, Jülich, Germany, chi squared image. 

 

3.2   Automatic Radiometric Normalization 
As mentioned the no-change observations detected by the 

iMAD method may be used in orthogonal or total least squares 

regression to automatically normalize a series of multispectral 

images to the same reference.  To do this we randomly divide 

the no-change observations between the two time points (here 

the pixels with probability of no-change greater than 0.95) into 

a training set (here consisting of 1,211 pixels) and a test set 

(here consisting of 578 pixels).  If we normalize the training 

pixels from 26 June to the data from 29 August (which is then 

the reference) orthogonal regression gives the calibration lines 

in Figures 8 (for the training data) and 9 (for the test data); as 

an example band 5 is shown.  Although the calibration line is 

based on the training data only, after calibration the test data fit 

the line y=x neatly. 

 

Intercepts and slopes with standard errors for all six bands are 

shown in Table A.  t-values and probabilities for obtaining a 

higher value of |t| are included (standard errors should be low, 

t-values high and probabilities close to 0, normally we say 

p<0.05). 

 

Table B gives paired t-tests for equal means for the test data 

after normalization (differences and t-values should be close to 

0 and probabilities high – the closer to 1 the better, normally 

we say p>0.05).  Table C gives F-tests for equal variances of 

the test data after normalization (F-values should be close to 1 

and probabilities high – the closer to 1 the better, normally we 

say p>0.05). 

 

Since the variables at both time points are associated with 

uncertainty orthogonal regression must be used here.  In fact, 

what is called reference data and what is called uncalibrated 

data is arbitrary. 

 

See also http://fwenvi-idl.blogspot.com/2009/07/normalizing-

images.html. 

 

3.3   ASTER Data, Kashmir, Pakistan 

This example is not described in detail here.  Instead see 

http://fwenvi-idl.blogspot.com/2009/06/detecting-changes.html 

which illustrates the application of the MAD method to detect 

mudslides in the aftermath of the disastrous earthquake of 8 

October 2005 centered near the city of Muzaffarabad in 

Pakistan-administered Kashmir.  The link also gives a neat 

Google Earth projection of the change detected.  The region 

lies in the area of collision of the Eurasian and Indian tectonic 

plates.  According to the United States Geological Survey 

(USGS) this earthquake had a magnitude of (at least) 7.6 on the 

moment magnitude scale (denoted MMS or MW) making it 

similar in size to the infamous 1906 earthquake in San 

Francisco, USA.  The data applied are the three VNIR 15 meter 

pixels ASTER bands 1, 2 and 3N over the area acquired on 5 

September and 27 October 2005. 

 

The Kashmir earthquake caused the death of more than 75,000 

people and enormous damage to housing and infrastructure, see 

http://en.wikipedia.org/wiki/2005_Kashmir_earthquake. 

 

4.   CONCLUSIONS 

 
We have demonstrated how the iterated scheme in the MAD 

method homes in on the no-change observations giving a very 

good discrimination between change and no-change regions.  

We have also shown how the no-change observations may be 

used in orthogonal regression (or total least squares) to obtain 

automatic radiometric normalization of image time series 

including statistical tests for equal means and variances after 

normalization. 

 

Post-processing of the MAD variates by means of kernel 

versions of principal components (Schölkopf et al., 1998) or 

maximum autocorrelation factors/minimum noise fractions  

(Green et al., 1988, Nielsen, 2011) may be useful. 

 

Sometimes both change detection and normalization by the 

MAD method fail because not enough no-change pixels can be 

found.  In these cases it is often advantageous to establish the 

transformation in a sub-area or region of interest only and then 

apply the transformation to the entire scene. 

 

IDL/ENVI, Python and Matlab software to carry out the MAD 

based analyses is available from the authors’ websites. 
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Figure 8.  Calibration line for band 5, training data. 
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Figure 9.  After calibration, band 5, test data; line is y=x. 

 
Table A.  Intercepts and slopes for all bands, training data only. 

 
Band Intercept Std.err. t P Slope Std.err. t p 

1 1.1249 0.4820 2.33 0.02 0.8679 0.0063 138 0.00 

2 2.0523 0.2836 7.24 0.00 0.8408 0.0048 174 0.00 

3 6.6036 0.1900 34.76 0.00 0.7916 0.0037 211 0.00 

4 4.3352 0.4247 10.21 0.00 0.6996 0.0048 146 0.00 

5 2.8539 0.2584 11.05 0.00 0.7999 0.0035 226 0.00 

7 6.1150 0.1037 58.97 0.00 0.7554 0.0024 317 0.00 

 
Table B.  Paired t-tests for equal means after normalization, 

test data. 

 
Band Uncorr. Normalized Ref. Diff. t p 

1 75.87 66.97 66.78 0.20 2.52 0.01 

2 57.83 50.68 50.56 0.11 1.60 0.11 

3 48.10 44.68 44.54 0.14 1.65 0.10 

4 85.21 63.95 64.00 −0.04 −0.26 0.80 

5 70.21 59.01 58.92 0.09 0.99 0.32 

7 39.66 36.07 35.99 0.08 1.42 0.16 

 
Table C.  F-tests for equal variances after normalization, 

test data. 

 
Band Uncorr. Normalized Ref. F p 

1 80.38 60.55 64.83 0.9339 0.41 

2 104.35 73.77 79.10 0.9326 0.40 

3 243.35 152.46 160.54 0.9497 0.54 

4 566.87 277.47 294.76 0.9413 0.47 

5 324.67 207.72 209.06 0.9936 0.94 

7 291.26 166.19 169.74 0.9791 0.80 
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