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Abstract - Using satellite, unmanned aircraft, and 

meteorological data, this study develops and validates a 

method to retrieve sub-pixel fire area fractions from fire 

pixels, detected at 1 km2 nominal spatial resolution, by the 

MODerate Resolution Imaging Spectroradiometer 

(MODIS).  A two-component model (Dozier method) for 

retrieving sub-pixel fire area fraction and temperature has 

been available since 1981.  However, in the current 

investigation, modifications are made to the retrieval to 

account for atmospheric effects by implementing output 

from a radiative transfer model at 3.96 and 11 µm (MODIS 

fire detection channels).  In addition, two clustering 

techniques are implemented to remove potential sources of 

error that may exist when using individual pixels.  The sub-

pixel retrieval will not only provide a valuable step for 

improving emissions estimates and plume height forecasts, 

but will also allow for an investigation into the 

meteorological effects on fire radiative power (FRP).  This 

may prove crucial for fire weather and air quality 

forecasters. 
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1.   INTRODUCTION 

 

Observed in many regions of the globe, biomass burning is a 

key component to the Earth-atmosphere system, climate 

change, and operational meteorology.  Individual fires are 

ignited by natural causes, such as lightning strikes (Peterson et 

al., 2010) and from anthropogenic causes, such as agriculture 

and forest clearing (Koren et al., 2007).  Even though a large 

region may be burned over the lifetime of a fire, the fire front 

usually comprises a very small area at any given observation 

time (Kaufman et al., 1998).  These small hot spots are the most 

intense part of the fire, emit the most radiative energy, and have 

been correlated to the regions of greatest smoke production and 

total biomass consumed (e.g. Wooster et al., 2005; Val Martin, 

2010).  Despite much advancement, all satellite sensors, 

including MODIS, provide fire locations as pixels that are 

flagged as containing fires.  Unfortunately, the pixel resolution 

is usually too coarse to capture the size of small hot spots, 

underscoring the need for obtaining accurate sub-pixel 

information. 

 

In recent years, the desire for sub-pixel fire information has 

continued to increase, especially when attempting use satellite 

fire radiative power (FRP) to its full potential.  FRP can be used 

as a quantitative indicator for fire intensity and is proportional 

to both the fire’s fuel consumption and smoke emission rates 

(e.g. Wooster et al., 2005).  While the use of FRP for estimating 

the fire emissions is well recognized, its potential use for other 

applications, such as estimating smoke injection heights and 

fire intensity, is limited by the lack of sub-pixel information for 

fires.  This can be understood via a simple example in which 

the FRP value is equal for two pixels covering the same area, 

but containing different burning scenarios: (i) a low fire 

temperature and large fire area fraction or (ii) a high fire 

temperature and small fire area fraction.  Not surprisingly, a 

large difference in fire behavior and smoke injection height is 

expected between (i) and (ii).  However, it will not be 

discernable in the current MODIS FRP product unless the sub-

pixel information is retrieved.  The implementation of a 

MODIS sub-pixel retrieval will allow FRP to be normalized to 

the fire area itself (FRPf), which will greatly improve smoke 

emissions and plume injection height estimates, allowing for 

finer-scale modeling.   

 

Dozier (1981) made the first attempt to derive a sub-pixel fire 

retrieval using a bi-spectral approach.  This method uses the 

spectral contrast between a sub-pixel hot target and the 

surrounding (presumably uniform) background of the pixel for 

the middle infrared (MIR) and thermal infrared (TIR) channels.  

While developed for the AVHRR, the Dozier method can be 

applied to any sensor having similar MIR and TIR channels.  

Using MODIS fire detection as an example, the calculation is 

performed at ~4 and 11 µm providing two equations that can be 

solved for the fire temperature (Tf) and the fractional area of the 

pixel covered by the fire (P), where 0 < P < 1, located within a 

uniform background at temperature Tb.  The observed radiances 

at 4 and 11 µm (top-of-atmosphere), denoted by L4 and L11, 

respectively, are 

 

L4 = PB(λ4,Tf ) + (1− P)B(λ4 ,Tb )   (1) 

L11 = PB(λ11,Tf )+ (1−P)B(λ11,Tb )   (2) 

 

where  is the Planck function and Tb is estimated from 

other datasets.  The target (fire) and background are assumed to 

be blackbodies and their emissivities are assumed to be 

identical in both channels (Giglio and Kendall, 2001).  With 

these assumptions, the surface kinetic temperatures, Tf and Tb, 

can be considered as brightness temperatures and can be used 

for both channels; otherwise equations (1) and (2) are not valid.  

In addition, all atmospheric effects are neglected, allowing the 

computation of  to be considered a top-of-atmosphere 

value.  Unfortunately, these assumptions are unrealistic (Giglio 

and Kendall, 2001) and the resulting fire fractions are hard to 

validate.  

 

The goal of this study is to experimentally implement a 

modified sub-pixel retrieval algorithm for the MODIS fire 

product, and validate its performance with high-resolution, field 

campaign data.  Many early studies could not validate the 

results of sub-pixel retrievals due to the dearth of suitable data 

sources.  However, multispectral, high-resolution data, obtained 

from the airborne Autonomous Modular Sensor (AMS) are now 

available for numerous fire events in the western United States.   

Using AMS, this study conducts a quantitative validation of 

MODIS sub-pixel fire information for several fire events and 

investigates several potential applications.  This is 

accomplished by (1) developing an algorithm to retrieve sub-



pixel fire information for MODIS, (2) developing a fire (hot 

spot) detection algorithm for the AMS sensor and using the 

results to validate the MODIS retrieval, (3) quantifying the 

potential sources of error and limits of the MODIS retrieval, 

and (4) applying the results from (1-3) to investigate the 

meteorological effects on fire intensity, fire size, and smoke 

emissions. 

 

2.   DATA AND STUDY REGION 

 

Using the Aqua and Terra MODIS sensors, three data products, 

provided at 1 km2 spatial resolution, are required to obtain sub-

pixel information: (1) level 1B radiance data, (2) geolocation 

data, and (3) level 2, collection 5 fire product data.  Data 

sources (1) and (2) provide the radiance of the entire pixel and 

all relevant geometry information, such as solar zenith, relative 

azimuth and viewing zenith angles, while the fire product (3) 

provides information on fire locations, background temperature, 

and FRP.   

 

An AMS sensor, flown aboard a NASA Unmanned Airborne 

Vehicle (UAV), provides the high-resolution data for this study.  

The AMS spatial resolution is controlled by the UAV’s altitude 

and commonly falls in a range from 5 to 50 meters, (Ambrosia 

and Wegener, 2009).  The AMS sensor is a multispectral 

instrument with 12 spectral channels in the visible through 

thermal-infrared.  Fire hot spots are detected using channel 11 

(3.75 µm) and channel 12 (10.76 µm) (Ambrosia and Wegener, 

2009).  In contrast to MODIS, a fire detection algorithm does 

not exist for the AMS sensor, which requires an algorithm 

development step (Section 4).  The major concern with AMS 

data is saturation in the 4 µm channel, which occurs between 

510 and 530 K.  However, with saturation occurring at such a 

high temperature, the separation of fire hot spots from 

background pixels is not compromised. 

 

Several AMS flight scans, from August - October 2007, are 

available to this study, which include multiple fires across the 

western United States.  With a wide range in topography and 

biomass type, the western United States is known to experience 

a wide variety of burning conditions.  These variables affect the 

fire rate of spread, which can reach 34 meters per minute (~0.5 

km per 15 minutes) in the chaparral of Northern California 

(Stephens et al., 2008) suggesting that some fires may change 

drastically in a short time period.  Therefore, the temporal 

difference between AMS and MODIS is limited to a maximum 

of 15 minutes.  With this temporal limitation, a total of six 

contiguous burning areas imaged by both sensors are available, 

which include day, night, nadir, and off-nadir MODIS 

observations (54 MODIS pixels total).  Four of the collocations 

are from a single Santa Ana burning event in Southern 

California (24-28 October 2007) and two additional cases are 

from a fire event in Northern California on 9 September 2007.   

 

3.   SUB-PIXEL RETRIEVAL FOR MODIS 

 

Since MODIS data became available in January of 2000, few 

attempts have been made to implement a MODIS sub-pixel 

retrieval, which is likely a result of the potential for error, 

especially from atmospheric effects (Giglio and Kendall, 2001).  

In this study, output from the Santa Barbara DISORT 

Atmospheric Radiative Transfer (SBDART) model is used to 

provide a representation of atmospheric effects prior to the 

calculation step, which avoids creating additional terms for 

atmospheric transmittance.  Specifically, SBDART considers 

many processes known to affect the ultraviolet though the 

infrared wavelengths allowing for detailed computations of 

plane-parallel radiative transfer within the Earth’s atmosphere 

and at the surface (Ricchiazzi et al., 1998).  The inclusion of 

SBDART output into the sub pixel retrieval process allows the 

effects of various atmospheric profiles on the resulting fire area 

fraction and temperature to be investigated.  In addition, 

SBDART makes it possible to remove the solar impact for 

daytime retrievals (primarily at 4 µm). 

 

As a preliminary step, a lookup table is created for the for the 

3.96 and 11.0 µm (MODIS fire detection) channels.  

Specifically, SBDART is modified to include the MODIS 

spectral response functions for each channel and then run 

repeatedly for the possible range of geometry values, 

background temperatures, and fire (hot spot) temperatures.   

The input temperature values are the kinetic temperatures (not 

brightness temperatures) at the bottom of the atmosphere and 

the atmospheric profile is assumed to be a representative mid-

latitude summer profile due to the location and time of the 

events.   Input temperatures range from the lower limits for a 

background temperature (277 K) to the upper limit for a fire hot 

spot (1500 K).  While the process is computationally intensive, 

SBDART provides a top-of-atmosphere radiance, based on the 

input surface temperature, solar zenith, viewing zenith, and 

relative azimuth angles.  

 

The actual retrieval implements the lookup tables to aid in 

solving the 4 and 11 µm equations (similar to equations 1 and 

2) for each MODIS fire pixel contained within the spatial 

boundaries of the collocated cases.  However, the non-linear 

equations require the use of a multistep, iterative process to 

obtain fire area fraction and temperature.  To begin, the 

observed MODIS geometries and the respective hot spot 

temperature are matched to the lookup table to obtain the top-

of-atmosphere radiance of the fire hot spot.  The algorithm then 

cycles through all possible fire temperatures and calculates the 

fire fraction using a variation of the method developed by 

Shephard and Kennelly (2003), which assumes that the fire 

fraction (P in equations 1 and 2) is the same, regardless of 

channel.   

 

A residual calculation is used to keep track of the fire 

temperature and area fraction corresponding to the best fit in 

the observed radiances for the 4 and 11 µm channels and the 

final fire temperature and area fraction are selected based on the 

lowest residual.  Coregistration error and other random errors 

are addressed via two clustering methods. The first is a general 

summation method, where each individual retrieved fire 

fraction is summed to obtain the area of the entire fire.  The 

second is a single retrieval method, which performs a single 

retrieval for all MODIS fire pixels corresponding to the same 

fire event. 

 

The accuracy of the MODIS background temperature at both 

channels must be considered because it is an essential 

component of the sub-pixel calculation.  When compared to 4 

µm, the accuracy of the 11 µm background temperature may be 

less certain because the MODIS fire detection process focuses 

heavily on the 4 µm channel and only uses 11 µm for 

enhancement (Giglio et al., 2003).  As an example, 5 out of the 

54 MODIS fire pixels used in this study have a pixel brightness 

temperature that is less than the background temperature at 11 

µm (an unphysical scenario), while the 4 µm temperature 

displays no such mischaracterization.  This unusual observation 

may be a result of a small actively burning area surrounded by 

pixels dominated by large burn scars or a relatively warm, 

heterogeneous background.  Regardless of the reason, sub-pixel 

information cannot be retrieved for these pixels.   



4.   AMS HOT SPOT DETECTION 

 

The AMS data are used to validate the retrieved MODIS fire 

fractions (described in Section 3).  Similar to MODIS, AMS 

fire detection requires the use of thresholds, which can be 

somewhat subjective (Kaufman et al., 1998; Giglio et al., 

2003).  Due to the shift in the Planck Function toward shorter 

wavelengths at high temperatures, fire detection thresholds are 

typically based on the 4 µm channel.  However, several sensors, 

such as MODIS and GOES, consider the 11 µm channel to 

varying degrees (Giglio et al., 2003; Prins and Menzel, 1994).  

For example, MODIS incorporates the 4 and 11 µm 

temperature difference and the early GOES algorithm set a 

specific fire detection threshold for the 11 µm channel.  In the 

case of AMS, an 11 µm fire threshold is used as a secondary 

check when saturation is reached at 4 µm.  Through an 

automated process, the AMS fire detection thresholds are 

allowed to vary for each MODIS pixel and adapt to the unique 

characteristics of the AMS instrument.  The AMS algorithm 

described here is not meant for operational purposes and is 

specifically targeted at any AMS data points contained within a 

single MODIS pixel. 

 

Within any MODIS pixel in our sample, there are between 

4000 and 9000 AMS data points depending on the location 

relative to nadir (AMS or MODIS) and the AMS flight altitude 

(Figure 1).  These data points allow for a detailed investigation 

of the ‘mixed’ MODIS fire pixels, which commonly contain a 

background, smoldering, and actively burning region (e.g. 

Kaufman et al., 1998).  AMS fire detection is currently aimed at 

obtaining the mean state of temperature and fire size of two 

groups: (1) the data points of actively burning fires, and (2) the 

data points of the remaining region (including areas of 

smoldering fire, areas previously burned, and unburned areas).  

 

 
Figure 1.  Map showing the variation in AMS pixel size based 

on location within a single AMS flight scan.  Cool colors 

indicate regions of higher resolution and warm colors indicate 

the coarsest resolution. 

 

 

The AMS fire detection process is based on the histogram at 4 

and 11 µm and begins with background temperature selection 

(Figure 2).  Secondly, any AMS data points that are obviously 

not fire hot spots are removed and only the remaining AMS 

data points move on to be considered as fire hot spots.  The 

actual AMS fire detection thresholds (day and night) are 

calculated for both the 4 and 11 µm channels (orange lines in 

Figure 2) using the temperature histograms of each channel.  

Specifically, each histogram is searched for a region of 

separation between the actively burning regions and the cooler, 

soldering regions.  Any AMS data points with a temperature 

greater than the 4 and 11 µm fire thresholds are subsequently 

flagged as fire hot spots (red shading Figure 2).  The area of 

these pixels is then summed to calculate the fire hot spot area 

within the MODIS pixel under consideration (validation data).  

If necessary, the smoldering component can also be considered 

by using additional thresholds. 

 

 
Figure 2.  Histograms at 4 µm (top) and 11 µm (bottom) for an 

AMS fire detection within a single MODIS pixel.  Fire 

detection thresholds are displayed as orange lines and the 

MODIS and AMS background temperatures are displayed as 

green and blue lines, respectively.  Red shading indicates the 

final AMS fire detection. 

 

5.   RESULTS AND DISCUSSION 

 

At the pixel level, AMS and MODIS comparisons (Figure 3) 

show the retrieval has some skill for a fire area greater than 

~0.001 km2 (1000 m2), which corresponds to a fire area fraction 

of 0.001 in a 1 km2 MODIS pixel.  While the results show a 

very low bias, there is a large pixel-by-pixel variation 

producing a relatively low correlation (R = 0.49).  However, 

this variation decreases with larger fires (e.g. > 0.015 km2) and 

increases below 0.01 km2.  Several MODIS pixel fire fractions 

are within 25% of the AMS fire fraction while others deviate by 

more than 75%.  These results are expected based on potential 

coregistration issues and other random processes (e.g. Giglio 

and Justice, 2003).   The potential impacts from variations in 

AMS pixel geometry are also considered (color scheme Figure 

3), but this does not seem to have a major impact on validation 

results. 

 

 

Figure 3.  Comparison between retrieved MODIS fire area (per 

pixel) and AMS fire area from six collocated cases.  The color 

scheme indicates the variation in AMS pixel size (based on 

Figure 1).  Black indicates AMS mean pixel dimensions less 

than 10x10 meters and pink indicates AMS pixel dimensions 

greater than 15x15 meters within any 1 km2 MODIS pixel. 



In contrast to pixel-level retrievals, results from the clustering 

approach (Figure 4) show stronger agreement.  The clustering 

sum method produces the highest correlation (R = 0.97) 

suggesting that the random variation can be reduced by 

averaging, when looking at a fire event as a whole.  The single 

retrieval method also produces a high correlation (R = 0.96), 

but may be limited by the larger area used in the retrieval. 

 

 

 

 
Figure 4.  Comparison between retrieved MODIS fire fractions 

and AMS observations using the sum clustering technique (top) 

and the single retrieval method (bottom) for all six collocated 

cases.  

 

 

6.   CONCLUSIONS AND FUTURE WORK 

 

This study has developed a sub-pixel retrieval algorithm that 

can be used with any MODIS granule and a validation 

algorithm via the AMS sensor.  Preliminary comparisons are 

encouraging, especially at the cluster level.  With time, a 

method will need to be developed to define what constitutes a 

cluster for various fire events.  As of now, only six collocations 

are available, but the search for additional cases is still ongoing 

using Aqua data.  Future work will sort the cases into nadir, off-

nadir, daytime, and nighttime categories to examine how each 

situation affects the retrieval.  In addition, the potential for error 

from the MODIS retrieval and AMS data will be quantified.  

When the final product is available, FRPf will be used, in 

combination with a wide variety of metrological variables, to 

investigate the meteorological effects on fire intensity, smoke 

production, and/or plume height. 
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